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1 Problem

Deduce an expression for the possible frequencies of oscillation of a cable of mass m, length
l and spring constant k when its upper end is fixed, and mass M is suspended from its lower
end. What is the lowest angular frequency of oscillation for the special cases that a) M = 0,
b) m = 0, and c) m/M � 1?

2 Solution

The force of gravity and the constraint force at the upper end of the cable determine the
form of the static solution, but do not enter into a description of small oscillations (for which
the quadratic spring potential is what matters).

Before discussing the general case, we briefly examine special cases b) and c).
Case b) when the cable has zero mass is, of course, that of a mass M hanging from a

spring of constant k. The angular frequency of oscillation is,

ω =

√
k

M
(Case b). (1)

The lowest frequency of oscillation in case c) can be deduced by an application of the
virial theorem,1 which says that in bounded motion due to a quadratic potential, the time-
average kinetic and potential energies are equal. For the lowest mode when m � M , a point
whose unstretched position is x (taken to be positive downwards, with x = 0 at the upper
end of the cable) has displacement,

s(x, t) = (A + B cosωt)
x

l
, (2)

where A is the static displacement and B is the amplitude of oscillation of the lower end of
the cable. The time-average kinetic energy of the oscillating cable plus mass M is,

〈KE〉 =
1

2
B2ω2

〈
sin2 ωt

〉 (
M + m

∫ l

0

x2

l2
dx

l

)
=

1

4
B2ω2

(
M +

m

3

)
. (3)

The time-average of the spring potential energy of the system is,

〈PE〉 =
1

2
kB2

〈
cos2 ωt

〉
=

1

4
kB2. (4)

1See, for example, sec. 3.4 of H. Goldstein, C.P. Poole and H. Safko, Classical Mechanics, 3rd ed.
(Addison-Wesley, 2002), http://kirkmcd.princeton.edu/examples/mechanics/goldstein_3ed.pdf
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Equating the average kinetic and potential energies we find,

ω =

√
k

M + m/3
(Case c). (5)

We now take up the analysis of the general case.
We define f(x) as the internal force across a horizontal plane through point x. [f , like x,

is positive downwards.] The equation of motion for the displacement s(x, t) of an element
dx of the cable, centered on x, is then,

m
dx

l
s̈ = f(x + dx) − f(x) + m

dx

l
g =

(
f ′(x) +

mg

l

)
dx, (6)

so that,

s̈ =
l

m
f ′(x) + g. (7)

Due to the internal force f the element dx has stretched by amount,

s(x + dx) − s(x) = s′(x)dx. (8)

We recall that stretching of an elastic medium can be related to its elastic modulus E via,

f

A
= E

Δl

l
, (9)

where A is the area of a cross section perpendicular to the direction of the stretch. Con-
sidering the entire cable, we see that the modulus E and the spring constant k are related
by,

k =
EA

l
. (10)

For the element dx eq. (9) becomes,

f = EA
s′dx

dx
= kls′. (11)

Inserting this in the equation of motion (7) we find the wave equation,

s̈ =
kl2

m
s′′ + g. (12)

The boundary condition at the upper end of the cable is simply,

s(0, t) = 0. (13)

At the lower end of the cable, the equation of motion of the mass M is,

Ms̈(l, t) = −f(l) + Mg = −kls′(l, t) + Mg, (14)

noting that f(x) is the downward force in the cable at x while we need the upward force
here.
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We first display the static solution s0 for which eq. (12) becomes,

s′′0 = −mg

kl2
. (15)

Integrating once, and using condition (14) with s̈(l, t) = 0, we find,

s′0 =
mg

kl

(
1 − x

l

)
+

Mg

kl
. (16)

Integrating again, and using condition (13), we find,

s0(x) =
mg

kl

(
x − x2

2l

)
+

Mgx

kl
. (17)

We now consider an oscillatory displacement s1(x, t) in addition to the static displacement
s0. That is, s(x, t) = s0(x)+ s1(x, t). The equation of motion for s1 follows from eq. (12) as,

s̈1 =
kl2

m
s′′1 . (18)

The boundary condition at x = 0 remains eq. (13), while at the lower end of the cable
eq. (14) tells us that,

Ms̈1 = −kls′1. (19)

As anticipated, gravity does not enter into the description of oscillatory motion.
We seek standing wave solutions of frequency ω,

s1 = g(x) cos ωt. (20)

Inserting this in eq. (18) we find,

g′′ = −mω2

kl2
g, (21)

which is solved by,

g = A sin

√
m

k

ωx

l
, (22)

in view of boundary condition (13). Finally, the condition (19) tells us thatk

Mω2 sin

√
m

k
ω = kl

√
m

k

ω

l
cos

√
m

k
ω, (23)

ork √
m

k
ω tan

√
m

k
ω =

m

M
. (24)

This is the general solution to the problem.
If M = 0, then tan ω

√
m/k = ∞, so that

ω =
(2n + 1)π

2

√
k

m
(Case a). (25)
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If m = 0, the cable is massless and eq. (21) reverts to g′′ = 0, which is solved by g = Ax/l.
The boundary condition (19) then yields,

ω =

√
k

M
(Case b). (26)

If m/M � 1, then according to eq. (24) the lowest frequency occurs for a small value of
ω
√

m/k. We recall that for a small argument the tangent is approximately,

tan ε =
sin ε

cos ε
≈ ε − ε3/6

1 − ε2/2
≈ ε +

ε

3
. (27)

Then, eq. (24) becomes,
m

k
ω2

(
1 +

m

k

ω2

3

)
≈ m

M
. (28)

Hence,

ω2 ≈ k

M(1 + mω2/3k)
. (29)

Replacing ω2 on the righthand side of eq. (29) by its first approximation k/M , we find the
next approximation,

ω2 ≈ k

M + m/3
(Case c), (30)

in agreement with the result (5) obtained using the virial theorem.
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