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1 Problem

Analytic calculations of the electric field of a parallel-plate capacitor are notoriously difficult
[1]-[13]. The usual goal of such efforts is a calculation of the correction to the hard-edge
approximation, C = A/4πd (in Gaussian units), of the capacitance for plates of area A
separated by distance d.

Calculate instead the electromagnetic momentum of the parallel-plate capacitor if it
resides in a uniform magnetic field that is parallel to the capacitor plates.

Consider also the case of a capacitor whose electrodes are caps of polar angle θ0 < π/2
on a sphere of radius a.

In both cases, the remaining space is vacuum.

2 Solution

The principal result of this exercise is that the electromagnetic momentum of a parallel-plate
capacitor of central field E0 in a uniform magnetic field B0 due to a long solenoid is only 1/2
of the naive estimate of E0 ×B0 times (Volume/4πc).1 Furthermore, if the electromagnetic
momentum is interpreted as being stored in the electromagnetic fields, then only 2/3 of
the electromagnetic momentum is localized near the capacitor, while the remaining 1/3
is localized near the coils of the magnet, if there is no shielding of the fringe field of the
capacitor.

2.1 Electromagnetic Momentum

For systems in which effects of radiation and of retardation can be ignored, the electromag-
netic momentum can be calculated in various equivalent ways [15, 16],2

PEM =

∫
�A

c
dVol =

∫
E × B

4πc
dVol =

∫
ΦJ

c2
dVol =

∫
J · E
c2

r dVol, (1)

1A previous discussion [14] of the electromagnetic momentum of a capacitor in an electric field missed
this factor of 1/2.

2The third form of eq. (1) indicates that if the magnetic field is created by steady currents in a good/super
conductor, over which the scalar potential Φ is constant, then PEM = (Φ/c2)

∫
J dVol = 0. Similarly, currents

in a resistive conductor are associated with scalar potential that is maintained by a “battery,” independent
of other external fields, which latter don’t affect the field momentum. Hence, we restrict our attention to
magnetic fields created by currents that are not shielded from external fields, such as a rotating spherical
shell of charge.
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where � is the electric charge density, A is the magnetic vector potential (in the Coulomb
gauge where ∇ · A = 0), E is the electric field, B is the magnetic field, Φ is the electric
(scalar) potential (also in the Coulomb gauge), J is the electric current density, and c is the
speed of light. The first form is due to Faraday3 and Maxwell [21], the second form is due
to Poynting [22], J.J. Thomson [23, 24, 25] and Poincaré [26], the third form was introduced
by Furry [27], and the fourth form is due to Aharonov [28].

The four forms of eq. (1) lead to ambiguities of interpretation as to where the electro-
magnetic momentum is located, since the four integrands cannot all be the same physical
momentum density. The author takes the “Maxwellian” view that the electromagnetic field
momentum is stored in the electromagnetic fields, with density pEM = E×B/4πc (although
Maxwell himself was only aware of the first form of eq. (1), and associated the term �A/c
with the density of electromagnetic momentum). This ambiguity suggests to some that the
electromagnetic momentum does not have a clear meaning when associated with charges
and currents, in contrast to the case of free fields where it is the classical precursor of
the momentum of quantum photons [29]. Nonetheless, consistency between mechanics and
electromagnetism is only achieved if an electromagnetic momentum can be associated with
charges, currents and fields. Other examples by the author that illustrate this point include
[30]-[36].

The existence of four equivalent methods of calculation of the electromagnetic momentum
permits us to choose whichever form is most convenient in a particular situation. However,
it also provides some general guidance as to the sensitivity of these calculations to details at
large distances. For example, if the electric charge distribution � is spatially localized then
the first form of eq. (1) permits a calculation using only knowledge of the vector potential
in that localized region. This might suggest that details of the electric and magnetic fields
at large distances will be unimportant if we use the second form of eq. (1) to calculate the
electromagnetic momentum. However, the third form eq. (1) requires detailed knowledge of
the electric potential at the location of the currents that generate the magnetic field, which
may be far from the electric charges. This warns us that detailed knowledge of the electric
field far from the charges is in general needed when using the second form of eq. (1).

Another perspective is that the electromagnetic momentum (1) is a (bi)linear function of
the electric and magnetic fields, so its value is more sensitive to the behavior of the fields at
large distances than, say, a calculation of field energy which is quadratic in the electric and
magnetic field strengths. This point is illustrated in sec. 2.3 by a possibly surprising result
for the electromagnetic momentum of a capacitor in a uniform magnetic field.

2.2 Electric Dipole p = qd

We first consider the case of an electric dipole p = qd that consists of point charges ±q at
positions d+ and d− where d = d+ − d−.

The uniform magnetic field of strength B0 = B0 ẑ coud be created by a (long) solenoid
(rotating cylindrical shell of charge) whose axis of symmetry is the z axis. In the vicinity of

3Electromagnetic momentum can be identified with the electro-tonic state, first discussed by Faraday in
Art. 60 of [17]. Other mentions by Faraday of the electrotonic state include Art. 1661 of [18], Arts. 1729
and 1733 of [19], and Art. 3269 of [20].
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the capacitor the vector potential of the magnetic field is azimuthal, with value Aφ = ρB0/2,
4

so that we can write,

A =
�

2
B0 φ̂ =

B0

2
(−ρ sinφ x̂ + ρ cos φ ŷ) =

B0

2
(−y x̂ + x ŷ) =

B0

2
z × r̂ =

B0 × r

2
, (2)

at a point r = (x, y, z) = (ρ, φ, z) in a cylindrical coordinate system.
It is most straightforward in the present case to evaluate the electromagnetic momentum

using the first form of eq. (1). Then,

PEM,1 =

∫
�A

c
dVol =

qB0

2c
× (d+ − d−) =

B0 × p

2c
. (3)

Since the electromagnetic momentum (1) is a linear function of the charge distribution
� (as well as a linear function of the electric field E and the scalar potential Φ), the elec-
tromagnetic momentum of an extended charge distribution in a uniform magnetic field can
be calculated by linear superposition. In particular, the electromagnetic momentum
for any charge distribution with cylindrical symmetry (entirely within a uniform
magnetic field B0 for which the interior vector potential is given by eq. (2)) that
is a superposition of electric dipoles obeys eq. (3), where p is the total electric
dipole moment of the charge distribution.5,6 This result is confirmed for special cases
in secs. 2.3-4 and 2.6 below.7 Some examples that do not obey eq. (3) are given in [39].

Additional calculations of the electromagnetic momentum of an electric dipole are given
in the Appendix.8

4This vector potential also holds inside a rotating spherical shell of charge, as discussed in Prob. 12(a)
of [37].

5The result (3) can be inferred from Table II of [38]. If the sources of the external magnetic field were
magnetic monopoles rather than electric currents, the electromagnetic field momentum of an electric dipole
in the magnetic field would be zero, as can be inferred from Table I of [38]. This fact is desirable in that
for the latter case the system would contain no “moving parts” with mechanical momentum, so there could
be no “hidden mechanical momentum” to compensate for a nonzero electromagnetic field momentum of a
system whose center of mass/energy is at rest.

6It is noted in [39] that the case of a “point” magnetic dipole m and a “point” electric dipole p does not
obey eq. (3), because the magnetic field is slightly nonuniform over even a “point” electric dipole.

7See also, [40].
8Equation (3) was deduced with the tacit assumption that the electric dipole is inside the uniform

magnetic field B0. Suppose instead that the dipole is outside the solenoid (of radius a), where the magnetic
field is very small. The vector potential at the dipole then has the form,

A =
a2

2ρ
B0 φ̂ =

a2

2ρ2
ρB0 φ̂ =

a2B0

2ρ2
z × r̂ =

a2

ρ2

B0 × r
2

, (4)

and,

PEM,1 =
∫

�A
c

dVol =
qa2B0

2c
×
(

d+

ρ+2
− d−

ρ−2

)
≈ a2B0 × p

2cρ2
. (5)

In eq. (3), B0 happens to be the field at the location of the dipole, while in eq. (5) B0 is the magnetic field
in the distant solenoid and not the (near-zero) magnetic field at the dipole.

Equation (5) indicates that the field momentum of an electric dipole in a magnetic field can take on
almost any value. For example, if the “uniform” magnetic field at the electric dipole p is due to a distant
magnetic dipole m, then the field momentum of the system is given by PEM = E × m/c (as first deduced
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2.3 Parallel-Plate Capacitor

We next consider a parallel-plate capacitor that has plates of area A and separation d that
are parallel to the x-z plane and at distances y+ and y− from it, where d = y− − y+, as
shown in the figure below.

The uniform magnetic field of strength B0 is again created by a (long) solenoid whose
axis of symmetry is the z axis, so its vector potential is again given by eq. (2).

If the two parallel plates of the capacitor have the same shape, then the surface charge
distributions on the two plates have the same form, σ+ = −σ− ≡ σ, and the total charge
distribution is a superposition of electric dipoles parallel to the y axis. In this case we can
evaluate the electromagnetic momentum using eq. (3) (valid for the capacitor inside the
magnetic field),

PEM,1 =
B0 × p

2c
=

B0 ẑ ×−Qd ŷ

2c
=

QdB0

2c
x̂ =

E0B0

8πc
Vol x̂ , (8)

where p = −Qd ŷ is the total electric dipole moment, Q =
∫

σ dArea is the charge on each
plate of the capacitor, and E0 = 4πQ/A is the electric field in the capacitor neglecting edge
effects.

We could also use the first form of eq. (1), together with eq. (2), to find,

PEM,1 =

∫
�A

c
dVol =

1

c

[∫
+

σ+A+ dArea+ +

∫
−

σ−A− dArea−
]

by J.J. Thomson [25, 41, 42, 43]). Then,

PEM =
3(p · r̂)r̂ − p

r3
× m

c
=

B× p
c

+
3r̂× [(p · r̂)m − (m · r̂)p]

cr3
+ 2

m × p
cr3

. (6)

The field momentum (6) equals B× p/c if m ‖ p, but is twice this if p ‖ r̂ ⊥ m, and half this if p ⊥ r̂ ‖ m,
and the negative of this if m, p and r̂ are mutually orthogonal.

Further, a general argument has been given by B.Y.-K. Hu [39], who extended eq. (65) of [38] to find,

PEM,1 = (p ·∇)
A
c

=
B× p

c
+ ∇

(
p ·A

c

)
=

B × p
c

−
∫

(p · J)
r − rp

c2 |r − rp|3
dVol, (7)

where B is the magnetic field at the dipole and r points from the current element to the dipole. The integral
in eq (7) is nonzero in general, and can have almost any value for suitably complex current distributions.

Thus, the result (3) is a special case in the mathematical sense, although the assumption there of circular
symmetry for the magnetic field is “practical.”
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=
B0

2c

[∫
σ(−y+ x̂ + x+ ŷ) dArea −

∫
σ(−y− x̂ + x− ŷ) dArea

]

=
B0

2c
(y− − y+)

∫
σ dArea x̂ =

B0Qd

2c
x̂ =

B0p

2c
x̂ =

B0 × p

2c
. (9)

The result (8) holds no matter what the shape of the capacitor plates, and they are
valid for any separation d. This result is remarkable in that it is exactly 1/2 of the naive
expectation based on form 2 of eq. (1),

PEM,2 =

∫
E × B

4πc
dVol

?≈ E0B0

4πc
Vol x̂. (10)

In the interpretation that the electromagnetic momentum is stored in the electromagnetic
fields, we infer from eqs. (8) and (9) (which assume a uniform magnetic field with cylindrical
symmetry) that outside the capacitor, in its fringe field, the stored momentum is approxi-
mately −1/2 that stored within the nominal volume.9 This result is surprising in that we
can typically neglect the region outside the capacitor in considerations of capacitance and
stored energy. However, energy is quadratic while momentum is linear in the electric field
strength, so that field momentum is much more sensitive to fringe-field effects than is field
energy.10

2.4 Spherical Capacitor inside a Spherical Magnet

In this section we consider a capacitor whose electrodes are conducting spherical caps on
a sphere of radius a. The caps extend over polar angle 0 ≤ θ ≤ θ0 < π/2 in a spherical
coordinate system whose z axis is the symmetry axis of the capacitor.11

9In the following section we deduce that 1/3 of the total electromagnetic momentum is located far from
the capacitor, so that the momentum in the fringe field near a spherical capacitor is actually −2/3 that
stored in the nominal volume.

10The forms (8)-(9) depend on the assumption of cylindrical symmetry for the magnetic field B0 and the
(possibly distant) currents that produce it. An extreme alternative (suggested by B.Y.-K. Hu [39]) is for the
uniform magnetic field to be produced by sheets of current flow in the ∓x′ directions in planes at y′ = ±b, in
(x′, y′) coordinates rotated by angle θ with respect to the x-axis, for which the vector potential between these
sheets is Ax′ = B0y

′ and Ay′ = 0; i.e., A = B0(−x sin θ cos θ + y cos2 θ) x̂ + B0(−x sin2 θ + y sin θ cos θ) ŷ,
and A = 0 = B outside the sheets. Then, if the capacitor is inside the magnetic field,

PEM,1 =
∫

�A
c

dVol =
B0

c
{[Q(−x+ sin θ cos θ + y+ cos2 θ) + (−Q)(−x− sin θ cos θ + y− cos2 θ)] x̂

+[Q(−x+ sin2 θ + y+ sin θ cos θ) + (−Q)(−x− sin2 θ + y− sin θ cos θ)] ŷ}
=

B0p

c
(cos2 θ x̂ + sin θ cos θ ŷ) = cos2 θ

B0 × p
c

+ sin θ cos θ
B0p

c
ŷ, (11)

while the field momentum is zero if the capacitor is outside the magnetic field. Note that the field momentum
is proportional to B0 × p/c only for the special cases of θ = 0 or 90◦.

Since the field momentum within the nominal volume of the capacitor is approximately B0 × p/c, we
learn that the field momentum outside this nominal volume, but between the two current sheets, which
corresponds to the integral term in eq. (7), is − sin2 θB0 × p/c + sin θ cos θ(B0p/c) ŷ.

11The case of a sphere with a fixed surface charge distribution that varies as cos θ was considered by
Romer [29], which first interested the author in this type of problem.
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We suppose that the uniform external magnetic field B0 = B0 ŷ is along the y-axis. Then,
the electric potential Φ has the form,

Φ(r, θ) =

⎧⎨
⎩
∑

n odd An

(
r
a

)n
Pn(cos θ) (r < a),∑

n odd An

(
a
r

)n+1
Pn(cos θ) (r > a).

(12)

It is not easy to determine the Fourier coefficients An for the general case of spherical caps
of angle θ0, but it turns out that we need to know only the coefficient A1, which is related
to the dipole moment of the capacitor. Of course, the Fourier coefficients are nonzero only
for odd n, since the charge distributions on the two plates are equal and opposite.

We are interested in the x-component of the electromagnetic momentum, which we cal-
culate using the second form of eq. (1),

PEM,2,x = −
∫

EzB0

4πc
dVol. (13)

The z-component of the electric field is given by,

Ez = cos θEr − sin θEθ = −P1(cos θ)
∂Φ

∂r
+

sin θ

r

∂Φ

∂θ

=

⎧⎨
⎩ −∑n odd An

rn−1

an

(
nP1Pn + sin2 θP ′

n

)
(r < a),∑

n odd An
an+1

rn+2

(
(n + 1)P1Pn − sin2 θP ′

n

)
(r > a),

(14)

noting that dPn(cos θ)/dθ = − sin θ dPn(cos θ)/d cos θ = − sin θP ′
n.

We first consider the volume integral for the region r > a. In particular, if the magnetic
field is uniform for all r > a, then this integral includes the factor,∫ 1

−1

d cos θ
(
(n + 1)P1Pn − sin2 θP ′

n

)
=

4

3
δ1n −

∫ 1

−1

dμ (1 − μ2)P ′
n(μ)

=
4

3
δ1n − Pn|1−1 + μ2Pn|1−1 −

∫ 1

−1

dμ 2μPn(μ) =
4

3
δ1n − 4

3
δ1n = 0. (15)

Thus, the contribution to the electromagnetic momentum for r > a vanishes at every order
n, and so it appears that the total electromagnetic momentum stored in this region is zero.

For the region r < a the θ integral is,∫ 1

−1

d cos θ
(
nP1Pn + sin2 θP ′

n

)
=

2

3
δ1n +

∫ 1

−1

dμ (1 − μ2)P ′
n(μ)

=
2

3
δ1n + Pn|1−1 − μ2Pn|1−1 +

∫ 1

−1

dμ 2μPn(μ) =
2

3
δ1n +

4

3
δ1n = 2δ1n. (16)

Thus, only the n = 1 term of the potential for r < a contributes to the electromagnetic
momentum. We can identify the coefficient A1 as p/a2, where p is the dipole moment of the
charged capacitor (according to an observer at r > a). The electric field Ez,1 = −p/a3 due
to the n = 1 term is constant within the sphere of radius a.
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The electromagnetic momentum according to the second form of eq. (1) is then,

PEM,2,x = −
∫

EzB0

4πc
dVol = −Ez,1B0

4πc
Vol =

B0p

3c
, (17)

for any angle θ0 of the spherical capacitor.
This simplicity of this result is gratifying, but it disagrees with the previous result (3) that

the electromagnetic momentum of an electric dipole at right angles to a uniform magnetic
field is B0p/2c.

The defect of the result (17) is that it is based on the assumption that the magnetic field
is uniform at large distances from the capacitor. But, any real magnetic field, whose source
currents lie within a bounded volume, falls to zero at very large distances. And, as we noted
at the end of sec. 2.1, the details of the fields at large distance are important when using
form 2 of eq. (1) to calculate the electromagnetic momentum.

A model for a magnetic field that is uniform near the origin and well defined at large
distances is a sphere of (large) radius b > a on which there exists a surface-current density
that varies as K = 3cB0 × r̂/8π, where r̂ is a unit vector from the center of the sphere. That
is, the surface-current density varies as sin θ. The magnetic field is uniform within the sphere,
while outside the sphere the field is that of the magnetic dipole m = b3B0/2 = b3B0 ŷ/2
located at the center of the sphere. See also sec. 3.3 below.

The calculation of the electromagnetic momentum via form 2 of eq. (1) for the spherical
capacitor plus spherical magnet is the same as that given above for r < b, where the magnetic
field is uniform.

Now, we must calculate the electromagnetic momentum in the region r > b, where the
magnetic field has the dipole form,

B(r > b) =
3(m · r̂)r̂ − m

r3

=
m

r3
[3 sin2 θ sinφ cos φ x̂ + (3 sin2 θ sin2 φ − 1) ŷ + 3 sin θ cos θ sinφ ẑ], (18)

since,
r̂ = sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ. (19)

The electric field of the spherical capacitor has rectangular components,

E = Er r̂ + Eθ θ̂ (20)

= (Er sin θ + Eθ cos θ) cos φ x̂ + (Er sin θ + Eθ cos θ) sinφ ŷ + Ez ẑ,

noting that,
θ̂ = cos θ cos φ x̂ + cos θ sinφ ŷ − sin θ ẑ. (21)

The cross product is,

E × B(r > b) (22)

=
m

r3
[3(Er sin θ + Eθ cos θ) sin θ cos θ sin2 φ −Ez(3 sin2 θ sin2 φ − 1)] x̂

−3m

r3
Eθ sin θ sinφ cos φ ŷ − m

r3
(Er sin θ + Eθ cos θ) cosφ ẑ.
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On performing the azimuthal part of the volume integral, the only surviving terms are,∫ 2π

0

E × B(r > b) dφ =
πm

r3
[3(Er sin θ + Eθ cos θ) sin θ cos θ − Ez(3 sin2 θ − 2)] x̂

=
πm

r3

∑
n odd

An
an+1

rn+2

(
2(n + 1)μPn + (1 − μ2)P ′

n

)
x̂ (23)

recalling eq. (14), and where μ = cos θ = P1. The polar part of the volume integral includes
the factor,∫ 1

−1

dμ
(
2(n + 1)μPn + (1 − μ2)P ′

n

)
=

∫ 1

−1

dμ (2(n + 1)μPn + 2μPn) = 4δ1n. (24)

The contribution to the electromagnetic momentum at r > b is thus,

PEM,2(r > b) =

∫
r>b

E × B

4πc
dVol =

a2A1m

c

∫ ∞

b

r2 dr

r6
x̂ =

a2A1m

3b3c
x̂ =

B0p

6c
x̂. (25)

Combining this with eq. (17), which gives the electromagnetic momentum for r < b, we find
the total electromagnetic momentum of a spherical capacitor inside a sin θ spherical magnet
to be,

PEM,2 =
B0p

2c
x̂ =

B0 × p

2c
, (26)

which now agrees with eq. (3).
It is noteworthy that 1/3 of the electromagnetic momentum is located outside the coil

of the spherical magnet, according to form 2 of eq. (1), no matter how large is the magnet
compared to the capacitor inside it. This result holds for any two-electrode capacitor with
midplane symmetry, since its potential obeys eq. (12) for r > a where a is the radius of a
sphere that completely enclosed the capacitor.

Thus, we find the result (9) of sec. 2.3 to be even more impressive as we now understand
that the electromagnetic momentum located close to the capacitor sums to only 1/3 of the
naive estimate E0 × B0 Vol/4πc.

For completeness, we also calculate the electromagnetic momentum using the third form
of eq. (1),

PEM,3 =

∫
r=b

Φ(b)K

c2
dArea =

3B0

8πc
×
∑

n odd

An

(a

b

)n+1
∫ 1

−1

2πb2 d cos θ Pn(cos θ) r̂

=
3b2B0

4c
×
∑
n odd

An

(a

b

)n+1
∫ 1

−1

d cos θ Pn(cos θ)(cos θ ẑ + sin θ ρ̂)

=
B0 × a2A1 ẑ

2c
=

B0 × p

2c
, (27)

in agreement with eq. (3).
Thus, we have an explicit example of a capacitor in a magnetic field for which the

electromagnetic momentum is calculated to have the same value using the first three forms
of eq. (1).
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2.5 Hidden Mechanical Momentum

The electromagnetic momentum (1) can be nonzero for configurations of static charge dis-
tributions combined with steady electric currents. From a mechanical point of view, such
systems are at rest, so it is counterintuitive that they can contain a nonzero momentum.

In footnote 2 above we saw that if the currents flow in perfect conductors, which are
equipotentials, the total electromagnetic momentum of the system of currents plus fixed
charges would be zero. Hence, in the examples above we have tacitly assumed that the
currents do not flow in superconductors.

An idealized model for the surface currents K of the preceding sections is that they are
due to a nonconducting tubes at rest that contain a circulating incompressible liquid of
charged molecules, and that adjacent tubes have oppositely charged molecules whose flow
has opposite senses of rotation. In this model the only matter in motion is the charge carriers,
and the structure is electrically neutral. The electric potential on the incompressible charged
fluid is that due to the fixed charges elsewhere in the system.

In this case, as first noted by Shockley [44], and more explicity by Coleman and Van Vleck
[45] and by Furry [27], as the charges move through a spatially varying electric potential Φ
their relativistic mass changes according to −eΦ/c2 so that the (quasistatic) system possesses
a “hidden” mechanical momentum,

Pmech,hidden = −
∫

ΦJ

c2
dVol = −PEM. (28)

A system of currents and charges “at rest” therefore contains zero total momentum, in
agreement with one’s expectations.

We note that according to eq. (1) the “hidden” mechanical momentum of a quasistatic
system can also be written as,

Pmech,hidden =

∫
�A

c
dVol, (29)

where � is the electric charge density and A is the Coulomb-gauge vector potential. For
further discussion of “hidden” mechanical momentum see, for example, [46].

2.6 Spherical Magnet inside a Spherical Capacitor

A variant of the example of sec. 2.4 is a spherical magnet with a sin θ winding of radius b
inside a spherical capacitor of radius a > b.

The electromagnetic momentum according to the third form of eq. (1) is, recalling eq. (12)
for the scalar potential of the capacitor,

PEM,3 =

∫
r=b

Φ(b)K

c2
dArea =

3B0

8πc
×
∑

n odd

An

(
b

a

)n ∫ 1

−1

2πb2 d cos θ Pn(cos θ) r̂

=
3b2B0

4c
×
∑

n odd

An

(
b

a

)n ∫ 1

−1

d cos θ Pn(cos θ)(cos θ ẑ + sin θ ρ̂)

=
b3B0 × A1/a ẑ

2c
=

E0 ×m

c
, (30)
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where m = b3B0/2 is the magnetic dipole moment, and E0 = −(A1/a) ẑ is the electric field
at the origin as given by eq. (14).

To calculate the electromagnetic momentum using the first form of eq. (1), we recall that
the vector potential associated with a magnetic moment m at the origin is,

A =
m× r̂

r2
, (31)

and that the combined surface charge σ density on the inner and outer surfaces of the
capacitor at radius a is given by,

σ =
Er(a

+) − Er(a
−)

4π
=
∑

n odd

(2n + 1)
An

4πa
Pn(cos θ). (32)

Then,

PEM,1 =

∫
r=a

σA(a)

c
dArea =

m

4πa2c
×
∑

n odd

(2n + 1)
An

a

∫ 1

−1

2πa2 d cos θ Pn(cos θ) r̂

=
m

2c
×
∑

n odd

(2n + 1)
An

a

∫ 1

−1

d cos θ Pn(cos θ)(cos θ ẑ + sin θ ρ̂)

=
m × A1/a ẑ

c
=

E0 ×m

c
. (33)

We partition the calculation of the electromagnetic momentum via form 2 of eq. (1) into
the three regions, r < b, b < r < a and r > a. The electric and magnetic fields for r < b in
the present case are the same as those for r < a in sec. 2.4, where we suppose that B0 = B0 ŷ.
Hence, from eq. (17) we see that,

PEM,2(r < b) = −
∫

r<b

EzB0

4πc
dVol x̂ = −Ez,1B0

4πc
Vol x̂ =

E0b
3B0

3c
x̂ =

2E0 × m

3c
. (34)

Similarly, the electric and magnetic fields for r > a in the present case are the same as those
for r > b in sec. 2.4, so from eq. (25) we see that,

PEM,2(r > a) =

∫
r>a

E× B

4πc
dVol =

a2A1m

c

∫ ∞

a

r2 dr

r6
x̂ =

A1m

3ac
x̂ =

E0 × m

3c
. (35)

For the region b < r < a we again use eqs. (18)-(22), but we note that eq. (23) becomes,∫ 2π

0

E(r < a)× B(r > b) dφ =
πm

r3
[3(Er sin θ + Eθ cos θ) sin θ cos θ − Ez(3 sin2 θ − 2)] x̂

=
πm

r3

∑
n odd

An
rn−1

an

(−2nμPn + (1 − μ2)P ′
n

)
x̂, (36)

again using eq. (14). The polar part of the volume integral includes the factor,∫ 1

−1

dμ
(−2nμPn + (1 − μ2)P ′

n

)
=

∫ 1

−1

dμ (−2nμPn + 2μPn) = 0. (37)
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Thus, the total electromagnetic momentum of a sin θ spherical magnet inside a spherical
capacitor is the sum of eqs. (34) and (35),

PEM,2 =
E0 × m

c
, (38)

in agreement with the calculations (30) and (33) using forms 1 and 3 of eq. (1).
Again, according to the interpretation of momentum being stored in the electromagnetic

field, 2/3 of the momentum is within the inner sphere, and 1/3 is outside the outer sphere.

2.7 An Electromagnetic Spaceship?

In the late 1940’s Joseph Slepian, a senior engineer at Westinghouse, posed a series of
delightful pedagogic puzzles in the popular journal Electrical Engineering. One of these
concerned how a capacitor in a cylindrical magnetic field might or might not be used to
provide a form of rocket propulsion [55].

The current in Slepian’s example is sinusoidal at a low enough frequency that radiation
is negligible, so that system can be regarded as quasistatic. In this case, the electromag-
netic field momentum is always equal and opposite to the “hidden” mechanical momentum,
according to a general result of sec. 4.1.4 of [46]. Consequently, the Lorentz force on the
system associated with the E and B field induced by the oscillating B and E fields are
always equal and opposite to the “hidden” momentum forces associated with the oscillatory

11



“hidden” momentum, and the total momentum of the system remains constant (no rocket
propulsion).12

A Appendix: Additional Calculations for an Electric

Dipole

If we evaluate the electromagnetic momentum for the electric dipole p = qd in a long solenoid
using either the second or third forms of eq. (1) we obtain divergent contributions of opposite
sign from the two charges ±q. It is delicate to obtain the finite resultant of these canceling
divergences.

Section A.1 presents a calculation in which a judicious cancelation of divergent terms
using the third form of eq. (1) yields the same result as with use of the first form. Section
A.2 avoids the problem of divergences in form 3 by consideration of a point dipole at the
origin. In sec. A.3 the long solenoid magnet is replaced by a spherical magnet with a sin θ
winding.

A.1 Calculation Using Form 3 of Eq. (1) for a Long Solenoid

We first consider the third form of eq. (1). The current in the solenoid of radius b whose
symmetry axis is the z-axis can be described by the surface current density vector K =
cB0 φ/4π. Then for a charge q at position d = (d, 0, z), where d < b, only the y-component
of
∫

ΦK dArea is nonzero, and we find using Dwight 200.01 [57],13

PEM,3 = ŷ

∫
ΦKy

c2
dArea = ŷ

∫ 2π

0

b dφ

∫ ∞

−∞
dz

qK cos φ

c2
√

b2 − 2bd cos φ + d2 + z2

=
dqB0 ŷ

4πc

∫ 2π

0

cosφ dφ lim
z→∞

[
ln(z +

√
b2 − 2bd cos φ + d2 + z2)

− ln(−z +
√

b2 − 2bd cos φ + d2 + z2)
]

= −dqB0 ŷ

4πc

∫ 2π

0

cosφdφ
[
ln(b2 − 2bd cos φ + d2)

−2 lim
z→∞

ln(z +
√

b2 − 2bd cos φ + d2 + z2)
]
. (39)

The divergent term in the last line of eq. (39) is independent of d, so when we add the
contribution of charge −q at some other position d′, we argue that the divergences cancel.
If so, we continue the evaluation of the finite part of eq. (39), integrating by parts and then
using Dwight 859.131 [57],

PEM,3,finite part = −dqB0 ŷ

4πc

∫ 2π

0

cosφdφ ln(b2 − 2bd cos φ + d2)

12See also [56].
13We neglect the effect of the variation of electric potential along the wire of the solenoid winding in

case this wire has finite conductivity. We have discussed the electromagnetic momentum of circuits of finite
conductivity in [34].
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=
b2qdB0 ŷ

2πc

∫ 2π

0

dφ
sin2 φ

b2 − 2bd cos φ + d2
=

qdB0 ŷ

2c
. (40)

Then, for an electric dipole p with charges ±q at (d+, 0, z+) and (d−, 0, z−), eq. (40) gives

PEM,3 =
q(d+ − d−)B0 ŷ

2c
=

B0 × p

2c
, (41)

in agreement with eq. (3).

A.2 Calculation for a Point Dipole via Form 3 of Eq. (1)

If we use form 3 of eq. (1) to evaluate the electromagnetic momentum of a point dipole in a
uniform magnetic field, we again obtain eq. (3), without having to cancel divergent terms.
For simplicity, we suppose that the dipole is at the origin, with moment p = p x̂. Then, the
electric potential of this dipole at position r is Φ = p cos θ/r2, where θ is the angle between
vector r and dipole moment p. Point r = (b, φ, z) on the solenoid winding of radius a has
rectangular coordinates (b cos φ, b sinφ, z), so that r =

√
b2 + z2 and cos θ = b cos φ/r. The

current in the solenoid is again described by the surface-current-density vector K = cB0φ/4π,
and again only the y-component of

∫
ΦK dArea is nonzero. Hence,

PEM,3 = ŷ

∫
ΦKy

c2
dArea = ŷ

∫ 2π

0

a dφ

∫ ∞

−∞
dz

p cos θ

c2r2
K cosφ

=
b2B0p

4πc
ŷ

∫ 2π

0

dφ cos2 φ

∫ ∞

−∞

dz

(b2 + z2)3/2
=

B0p

2c
ŷ =

B0 × p

2c
, (42)

in further agreement with eq. (3).

A.3 Calculation for a Spherical Magnet Using Form 3

The use of a long solenoid as a model of a uniform magnetic field involves unrealistic condi-
tions at “infinity”, which may lead to subtle inaccuracies in some calculations of the electro-
magnetic momentum. A better model for a uniform magnetic field B0 may be a sphere of
(large) radius b on which there exists a surface current density that varies as K = 3cB0×r̂/8π,
where r̂ is a unit vector from the center of the sphere. The magnetic field is uniform within
the sphere, while outside the sphere the field is that of the magnetic dipole m = b3B0/2
located at the center of the sphere.

We first consider a charge q at position d/2 ẑ where d/2 < a. Then, the electric scalar
potential of a charge q at position d/2 ẑ where d/2 < b, can be written in a spherical
coordinate system (r, θ, φ) for r > d/2 as,

Φq(r > d/2) =
2q

d

∑
n

(
d

2r

)n+1

Pn(cos θ), (43)

where Pn is a Legendre polynomial.
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Then, the electric dipole p = qd ẑ consisting of charges ±q at positions ±d/2 ẑ has
potential,

Φp(r > d/2) =
4q

d

∑
n odd

(
d

2r

)n+1

Pn(cos θ), (44)

recalling that Pn(−μ) = (−1)nPn(μ).
The electromagnetic momentum associated with the electric dipole p and the spherical

magnet is, according to form 3 of eq. (1),

PEM,3 =

∫
Φp(b)K

c2
dArea =

4q

d

3B0

8πc
×
∑

n odd

(
d

2b

)n+1 ∫ 1

−1

2πb2 d cos θ Pn(cos θ) r̂

=
3b2qB0

cd
×
∑

n odd

(
d

2b

)n+1 ∫ 1

−1

d cos θ Pn(cos θ)(cos θ ẑ + sin θ ρ̂)

=
B0 × qd ẑ

2c
=

B0 × p

2c
, (45)

in agreement with eq. (3).

B Appendix: Transient Analysis

B.1 Thomson’s 1904 Analysis of a Magnet plus Electric Charge

In 1904, J.J. Thomson considered a “magnet” (Ampèrian magnetic dipole m) together with
an external electric charge [25, 41, 42, 43]. He first deduced the field momentum of the
system as,

PEM =
E × m

c
, (46)

using the second form of eq. (1), which form he had invented in 1891 [23, 24]. He then
confirmed eq. (1) using the first (Maxwell) form of eq. (1).

On p. 348 of [42] he remarked, in effect, that his first argument that led to eq. (46)
suggested the field momentum is associated with the magnetic dipole, while his second
(Maxwell) argument suggested it is associated with the electric charge. He then noted that
if the Ampèrian magnetic dipole were a small permanent magnet (in the field of an electric
charge), and this magnet were demagnetized by “tapping,” the magnet would acquire the
initial momentum (46) according to his first argument, while the electric charge should aquire
this momentum according to his second (Maxwell) argument.

He did not conclude that these contradictory statements imply the total momentum
of the system must be zero (when it is “at rest”) [45], such that there exists a “hidden”
mechanical momentum [44] in the moving charges of the magnet, equal and opposite to the
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field momentum of the system,14,15,16,17

Pmag,hidden =
m ×E

c
= −PEM. (47)

Then, if the field momentum vanishes the “hidden” mechanical momentum does also, and
the total momentum of the system remains zero.

For Thomson’s particular example, the magnetic moment drops to zero while the static
electric field of the charge is unchanged. The latter field exerts no Lorentz force on the (elec-
trically neutral) magnetic dipole, so there is no change in its total mechanical momentum,

Fmag,Lorentz = 0 =
dPmag

dt
=

d

dt
(Pmag,overt + Pmag,hidden) = Mmag

dvmag

dt
+

dPmag,hidden

dt
, (48)

where the “overt” momentum of the magnet is its mass Mmag times the velocity vmag of its
center of mass. The “overt” mechanical momentum of the magnet/dipole changes according
to,18

Mmag
dvmag

dt
=

dPmag,overt

dt
= Fmag,Lorentz − dPmag,hidden

dt
= −dPmag,hidden

dt
, (49)

Mmagvmag,final = Pmag,overt,final = Pmag,hidden,initial =
m × E

c
. (50)

Meanwhile, the decreasing magnetic moment leads to an induced electric field at the charge
q, such that the force on the charge (which has no magnetic moment and no “hidden”
momentum) is,

F = qEind = −q

c

∂A

∂t
= −q ṁ × r

cr3
=

ṁ ×E

c
= −dPmag,overt

dt
. (51)

The final (“overt”) momentum of the charge is,

Mqvq,final = Pq,overt,final = −m × E

c
= −Pmag,overt,final = PEM,initial, (52)

The final total momentum of the system is zero, while the magnet and the charge have equal
and opposite final momenta.

14The form (47) was first given in eq. (7.85) of [47]. See also Ex. 12.13 of [48] and [49].
15A loop of area A that carries current I has magnetic moment m = IA/c, so the “hidden” momentum

(47) of the Ampèrian magnetic dipole (and the field momentum (46), which is the negative of eq. (47)) is an
effect of order 1/c2 and can be called “relativistic.” Of course, the latter notion was not yet well established
1904.

16The stable electric charges found in Nature, electrons and protons, also have magnetic moments, and
can possess “hidden” momentum. See, for example, [50, 51].

In this note we suppose that electric charges do not have magnetic moments.
17For discussion of a general definition of “hidden” momentum, see [46].
18When Shockley coined the term “hidden momentum” [44], he was also concerned with “hidden-

momentum forces” that arise when changes occur in examples like that of the present note. The term
−dPmech,hidden/dt was called the “hidden-momentum force” by Shockley [44], but is only occasionally men-
tioned in the literature. See, for example, sec. IV of [52], p. 53 of [53], and sec. 2.5 of [54]. Some care is
required in reading [52], where the distinction between Ampèrian and Gilbertian magnetic dipoles was not
always observed.
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B.2 Transient Analysis of a Magnet and Capacitor

October 2015. Appendix B.2 was inspired by comments from B.Y.-K. Hu [39].
In Appendix B.2, we consider a system consisting of an electrically neutral “magnet” that

has initial (Ampèrian) magnetic dipole moment mi and a “capacitor” with initial (Gilber-
tian) electric dipole moment pi. These moments are both nonzero initially, and both the
magnet and capacitor are initially at rest. The initial total momentum of the system is zero,

Ptotal,initial = 0 = Pmech,initial + PEM,initial = Pmech,hidden,initial + PEM,initial, (53)

and we suppose that the initial field momentum is well approximated by the expression
[25, 41, 42, 43],

PEM,initial =
Ei ×mi

c
(= −Pmech,hidden,initial) , (54)

where Ei is the initial electric field at the magnet due to the capacitor. For this to be so, the
capacitor should be outside the magnet, and their separation should be large compared to
their characteristic lengths. Then, according to eq. (46), the electromagnetic field momentum
of the system is PEM = [3(p · r̂) r̂−p]×m/cr3 ( 	= B×p/2c = −[3(m · r̂) r̂−m]×p/2cr3),
where r is distance vector from p to m.

The field momentum of the electric dipole p = q(d+ − d−) in a magnetic field B can
also be computed from the vector potential A(r) =

∫
[J(r′)/c |r − r′|] dVol′ (in the Coulomb

gauge), due to the current density J in the magnet that produces B, according to Maxwell’s
form (1),

PEM =

∫
�A

c
dVol = q

A(d+) − A(d−)

c
= (p · ∇)

A

c
=

B × p

c
+ ∇

(
p · A

c

)
(55)

=
B × p

c
+

p

c2
·
∫

J(r′)∇
(

1

|r − r′|
)

dVol′ =
B × p

c
− p

c2
·
∫

J(r′)
r − r′

|r − r′|3 dVol′,

where the fourth form was deduced as eq. (65) of [38], and the fifth form follows from the
vector-calculus identity for ∇(p ·A), noting that B = ∇×A and that the operator ∇ does
not act on the dipole moment p = q(d+ −d−). The last form is due to B.Y.-K. Hu, eq. (9d)
of [39]. In eq. (55), r is the position of the capacitor/electric dipole moment p.

We consider two transient scenarios: the magnet current drops to zero while the capacitor
remains charged; and the capacitor discharges while the magnet current remains constant.

B.2.1 The Magnet Current (and Dipole Moment m) Drop to Zero

This case is similar to that of sec. B.1, where the magnet current also dropped to zero.
When the current in the magnet is changing, there exists a transient electric field given

by,

Etransient = −1

c

∂A

∂t
, (56)

where A is the vector potential (in the Coulomb gauge) associated with the magnet current.
This transient electric field exerts a force with density �Etransient on the charge density � of
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the capacitor, so the capacitor takes on momentum,

Pcap,final = Mcapvcap,final =

∫
Fcap dt = −1

c

∫
� dVol

∫
∂A

∂t
dt =

∫
�Ai

c
dVol = PEM,initial.(57)

That is, the initial field momentum becomes converted to mechanical momentum of the
capacitor as the current and the magnetic moment m drop to zero.19

The electric field of the capacitor exerts no force on the electrically neutral magnet,
Fmag = 0, so it might seem that the magnet ends up with zero momentum, once the initial
“hidden” mechanical momentum, Pmech,hidden,initial = E × m/c, has fallen to zero. If so,
the total final momentum of the system would be nonzero, and momentum would not be
conserved.

However, we should consider Newton’s law for the magnet to read,

Fmag =
dPmag

dt
=

d

dt
(Mmagvmag + Pmech,hidden), (58)

where Mmag and vmag are the mass and velocity of the magnet, in that the “hidden” mechan-
ical momentum of the system is associated with the moving charges of the magnet current.
Hence, the motion of the magnet is related by,

Mmag
dvmag

dt
= Fmag − d

dt
Pmech,hidden (59)

So, even though Fmag = 0, the magnet ends up with a small final momentum,20

Pmag,final = Mmagvmag,final = Pmech,hidden,initial =
Ei × mi

c
= −PEM,initial = −Pcap,final, (60)

such that the final total momentum is zero, as expected from momentum conservation,

Ptotal,final = Pmag,final + Pcap,final =
Ei × mi

c
+

mi ×Ei

c
= 0. (61)

B.2.2 The Capacitor Discharges (and the Dipole Moment p Drops to Zero)

If instead the capacitor discharges while the magnet current is held constant (by a “bat-
tery”), there exists a transient current density associated with the capacitor, which can be
represented as,

Jcap =
dp

dt
δ3(r − rcap), (62)

for a small (pointlike) capacitor. The magnetic field Bi of the magnet at the location of the
capacitor exerts a Lorentz force on this transient current density,

Fcap =

∫
Jcap

c
× Bi dVol =

dp

dt
× Bi

c
, (63)

19The moving capacitor has a small magnetic moment, mcap ≈ pcap × vcap/c [58], whose tiny effect is
ignored here.

20An interpretation of eqs. (59)-(60) is that as the “hidden” mechanical momentum drops to zero (accord-
ing to eq. (28), with zero final current in the magnet), it becomes converted (by “hidden-momentum forces”
[44] not described by Fmag) to “ordinary” (or “overt”) mechanical momentum associated with motion of the
magnet’s center of mass.
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such that the final momentum of the capacitor (whose initial moment is pi and whose final
moment is zero) is,

Pcap,final =

∫
Fcap dt = −pi ×Bi

c
=

Bi × pi

c
= Mcapvcap,final . (64)

In addition, the current density (62) of the discharging capacitor generates a transient
magnetic field according to the Biot-Savart law (ignoring radiation and retardation),

Bcap(r) =

∫
Jcap(r

′) × (r − r′)

c |r − r′|3 dVol′cap =
dp

dt
× r − rcap

c |r − rcap|3
. (65)

This transient field exerts a Lorentz force on the (constant) current density Ji of the magnet,

Fmag =

∫
Ji ×Bcap

c
dVolmag =

dPmag

dt
=

d

dt
(Mmagvmag + Pmag,hidden), (66)

recalling eq. (58). Hence (ignoring the small change in position of the magnet as the capacitor
discharges),

∫
Fmag dt =

∫
Ji ×

(
pi × r − rcap

c2 |r − rcap|3
)

dVolmag

= pi

∫
Ji · r − rcap

c2 |r − rcap|3
dVolmag −

∫
Ji · pi

r − rcap

c2 |r − rcap|3
dVolmag

= −
∫

Ji · pi
rcap − r

c2 |rcap − r|3 dVolmag

= Mmag,finalvmag,final + Pmag,hidden,final − Mmag,initialvmag,initial − Pmag,hidden,initial

= Mmag,finalvmag,final −Pmech,hidden,initial = Pmag,final −Pmag,hidden,initial, (67)

noting that the final “hidden” momentum is zero according to eq. (29) since �final = 0, and,∫
J · r − r′

|r − r′|3 dVolmag = −
∫

J · ∇
(

1

|r − r′|
)

dVolmag

=

∫ ∇ · J
|r − r′| dVolmag −

∫
∇ ·

(
J

|r − r′|
)

dVolmag = −
∮

J

|r − r′| · dArea → 0, (68)

for a bounded, static current density, which obeys ∇ · J = 0.21

We also recall that the initial “hidden” momentum is equal and opposite to the initial
field momentum, so that according to eq. (55),

PEM,initial = Bi × pi −
∫

Ji · pi
rcap − r′

c2 |rcap − r′|3 dVol′mag = −Pmag,hidden,initial. (69)

21For an “infinite” solenoid, with J perpendicular to its axis, J ·dArea = 0 for spherical surfaces centered
on a point on the solenoid axis, so eq. (68) holds for this case also.
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Altogether, we have,

Pmag,final = Mmagvmag,final = −
∫

Ji · pi
rcap − r′

c2 |rcap − r′|3 dVol′mag + Pmech,hidden,initial

= −
∫

Ji · pi
rcap − r′

c2 |rcap − r′|3 dVol′mag − PEM,initial = −Bi × pi, (70)

and the total, final momentum is,

Ptotal,final = Pmag,final + Pcap,final = −Bi × pi + Bi × pi = 0, (71)

as expected.
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