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1 Problem

A neutron has no electric charge, but it does have a magnetic moment m. Hence, we can
expect an accelerated neutron to emit radiation. Here, we ask whether a neutron will emit
Čerenkov radiation when traveling inside a dielectric medium with uniform velocity v > c/n,
where c is the speed of light in vacuum and n is the index of refraction of the medium?

Also discuss the case of an (electrically neutral) electric dipole, such as a water molecule.
It suffices to suppose that the magnetic moment is parallel to the velocity, that the

electric-dipole moment is perpendicular to the velocity, and that both of these are “point”
moments.

2 Solution

Towards answering this, we consider the spectrum of energy vs. angular frequency ω and
solid angle Ω of a pulse of radiation due to electric charge e with time-dependent velocity
v,1
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, (1)

in Gaussian units, where k is the wave vector with k = nω/c in case of a medium with index
of refraction n, and hence k̂ = n̂ is the unit vector pointing to the observer. Also, β = v/c.

2.1 Čerenkov Radiation by a Neutron

A magnetic moment may be thought of as an electric-current loop, so we need a version
of eq. (1) for a current rather than an electric charge, For this we note that for a moving
charge,2

1This approach follows pp. 261-265 of [1]. See also sec. 20-7 of [2], and p. 250 of the author’s E&M
Lecture 21 [3].

A derivation of eq. (1) in vacuum via the Liènard-Wiechert fields is given in sec. 14.5 of [4].
2For a point charge e at the origin is its rest frame we can write its charge density as

ρ� = e δ(x�) δ(y�) δ(z�), and, of course, the current density is zero, J� = 0. In a frame where the charge has
velocity v = v ẑ, the charge and current densities follow from the Lorentz transformations,
ρ = γρ� = γe δ(x�) δ(y�) δ(z�) = γe δ(x) δ(y) δ(γ(z − vt)) = e δ(x) δ(y) δ(z − vt),
and J = γρ�v ẑ = γe δ(x) δ(y) δ(γ(z − vt))v ẑ = e δ(x) δ(y) δ(z − vt)v ẑ = ρv ẑ, noting that δ(γz) = δ(z)/γ
since

∫
f(z) δ(γz) dz =

∫
(f(z)/γ) δ(γz) d(γz) = f(0)/γ . That is, while an extended charge density is en-

hanced by the Lorentz contraction in a frame where the density is in motion, a point charge is not subject
to the Lorentz contraction.
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e β → J

c
dVol, (2)

and hence,3
dUω

dΩ
=

ω2n

4π2c3

∣∣∣∣
∫ ∫

J × k̂ ei(ωt−k·r) dt dVol

∣∣∣∣
2

. (3)

For a neutron moving with its magnetic moment m parallel to its uniform velocity v ẑ in
a medium of index of refraction n, we use eq. (3), taking the current density to be,4

J = c∇ ×m = c∇× m0 ẑ δ(x) δ(y) δ(z − vt). (4)

Hence, from eq. (3),
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, (5)

where the second line follows from the first via integration by parts with respect to volume,
while in the fifth line we note the k = nω/c for waves in a medium of index n, and we take
θ as the angle between n̂ and the z-axis.

The remaining integral is the same as in an intermediate step of the computation for
Čerenkov radiation by electric charge e with velocity v = v ẑ, as on the top of p. 251 of [3],
where the prefactor is e2ω2nv2 sin2 θ/4π2c3. Hence,

dUω/dΩ|moving neutron

dUω/dΩ|moving charge e
=

c2

v2

k2m2
0

e2
=

c2

v2

m2
0

e2λ2 . (6)

Since mneutron ≈ e�/Mc = eλneutron, where λneutron is the Compton wavelength of the neutron,
the ratio is approximately λ2

neutron/λ
2 for the Čerenkov radiation at reduced wavelength

λ = λ/2π = 1/k. That is, Čerenkov radiation by a neutron is an extremely weak effect.5

3Equation (3) also follows from p. 182 of the author’s E&M Lecture 15 [5], since |n̂ × (n̂ × J)| = |J× k̂|.
4If the magnetic moment has a component perpendicular to its velocity, then it appears to have an

electric-dipole moment as well (as reviewed in the Appendix), which also contributes to Čerenkov radiation.
This contribution is different for a magnetic moment due to electric currents and one due to opposite magnetic
charges (monopoles).

The earliest computations of Čerenkov radiation by neutrons (Frank, 1942) assumed the latter, while it is
now believed that the former assumption is more appropriate. See, for example, [6].

5For another exotic Čerenkov effect, involving “light bullets”, see [7].
The author has made an experimental demonstration of the interference between Čerenkov radiation and

synchrotron radiation by a relativistic electron moving on a circular path in a gas [8].
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2.2 Čerenkov Radiation by a Point Electric Dipole

We now consider an electrically neutral particle with electric-dipole moment p0 in its rest
frame, and zero magnetic moment there. For simplicity, we also suppose p0 to be perpen-
dicular to the lab-frame velocity v, where v > c/n in the medium of index of refraction n.
Then, from eq. (19) of the Appendix, the lab-frame current density is,

J = −v (p0 · ∇) δ(x) δ(y) δ(z − vt) = ρv, (7)

and the frequency-angle spectrum of the radiation is given by,

dUω
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=
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4πc3
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∫ ∫
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, (8)

where the third line follows from the second via integration by parts with respect to volume,
and we take θ as the angle between n̂ and the z-axis.

The remaining integral is the same as in an intermediate step of the computation for
Čerenkov radiation by electric charge e with velocity v = v ẑ, as on the top of p. 251 of [3],
where the prefactor is e2ω2nv2 sin2 θ/4π2c3. Hence,

dUω/dΩ|electric dipole

dUω/dΩ|charge e
=

k2p2
0 sin2 θ

e2
<

p2
0

e2λ2 , (9)

where the Čerenkov angle θ is related by cos θ = c/nv.
The electric dipole p0 might be that of an atom, in which case p0 ≈ eRBohr, where the

Bohr radius is RBohr ≈ 5× 10−11 m, and the ratio (9) would be ≈ (RBohr/λ)2 ≈ 2× 10−7 for
λ = 600 nm, i.e., λ ≈ 10−7 m. While the Čerenkov radiation by such an electric dipole is
strong compare to that of a neutron, it is very weak compared to that of an electron.

A Appendix: Charge and Current Densities for Point

Dipoles p0 and m0

As reviewed in [9], the Lorentz transformation of electric and magnetic polarization densities,
P and M, from their rest frame (the � frame) to a frame in which they have velocity v is,

P = γ
(
P� +

v

c
× M�

)
− (γ − 1)(v̂ · P�) v̂, (10)

M = γ
(
M� − v

c
× P�

)
− (γ − 1)(v̂ · P�) v̂, (11)
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where c is the speed of light and γ = 1/
√

1 − v2/c2.
For a “point” particle at the origin in its rest frame, with rest-frame electric and magnetic

dipole moments p0 and m0, we write its electric and magnetic polarization densities as,

P� = p0 δ3r�, and M� = m0 δ3r�, (12)

and the associated rest-frame charge and current densities as,

ρ� = −∇� · P� = −(p0 ·∇�) δ3r�, and J� = c∇� × M� = −cm0 × ∇� δ3r�. (13)

In a frame where the particle has velocity v = v ẑ, the charge and current densities are,

ρ = γ
(
ρ� + (J� · v̂)

v

c2

)
, J = J� + (γ − 1)(J� · v̂) v̂ + γρ�v. (14)

We note that the Lorentz transformation of the 4-gradient ∂μ = (∂t/c,−∇) tells us that
−∂�

x = −∂x, −∂�
y = −∂y and −∂�

z = γ(−∂z − (v/c)∂t/c), i.e.,

∇� = ∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂
∂

∂ct
. (15)

Hence, eqs. (13) and (14) combine to give,

ρ = γ

(
−p0 ·

[
∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

−v

c
v̂ · m0 ×

[
∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

)

= −p0 ·
[
∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt)

−v

c
v̂ · m0 ×

[
∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt), (16)

and,

J = −cm0 ×
[
∇ + (γ − 1) v̂ (v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

−(γ − 1)c v̂

(
v̂ · m0 ×

[
∇ + (γ − 1) v̂ (v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

)

−γv

(
p0 ·

[
∇ + (γ − 1) v̂ (v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

)

= −cm0 ×
[∇

γ
+

γ − 1

γ
v̂ (v̂ ·∇) + β v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt)

−γ − 1

γ
c v̂

(
v̂ · m0 ×

[
∇ + (γ − 1) v̂ (v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt)

)

−v

(
p0 ·

[
∇ + (γ − 1) v̂ (v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt)

)
. (17)
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These expressions are somewhat simpler for the special cases that p0 ⊥ v and m0 ‖ v,

ρ = −
(
(p0 · ∇) +

v

c
v̂ · m0 × ∇

)
δ(x) δ(y) δ(z − vt), (18)

J = −
(
v (p0 ·∇) + cm0 × ∇

)
δ(x) δ(y) δ(z − vt). (19)

Equation (4) then follows from eq. (19) when p0 = 0, and eq. (7) follows when m0 = 0.
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