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1 Problem

An impressive demonstration, in which a bead chain appears to leap upwards from a beaker,
before arcing over and falling down, is given at http://www.youtube.com/watch?v=6ukMId5fIi0

See also, http://stevemould.com/siphoning-beads/1

Two photos from this video are shown above.
Discuss the motion of the beaded chain, and relate it to “hidden” momentum, as defined

in [2],

Phidden ≡ P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = −
∫

f0

c
(x− xcm) dVol, (1)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass”, U is its total
energy, c is the speed of light in vacuum, xcm is its center of mass/energy, vcm = dxcm/dt,
p is its momentum density, ρ = u/c2 is its “mass” density, u is its energy density, vb is the
velocity (field) of its boundary, and

fμ =
∂T μν

∂xν
, (2)

1This phenomenon may have be first described by Thomson (Lord Kelvin) in 1857 [1]. The earliest video
of this may that shown around time 10:40 in https://www.youtube.com/watch?v=bHIhgxav9LY. See also
https://www.youtube.com/watch?v=m-88M75_PCI (July 29, 2009).

A video of a “rope fountain” is at https://www.youtube.com/watch?v=HoSKvBweOrg
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is the 4-force density exerted on the subsystem by the rest of the system, with T μν being
the stress-energy-momentum 4-tensor of the subsystem.

2 Solution

Other discussions of this problem include [3]-[15].

2.1 The Motion

A chain can be under tension, but not under compression. The chain at rest in the beaker
cannot give energy or momentum to that part of the chain which is in the air. Rather, once
the chain is in the air, the weight of the lower part of the chain creates a tension in the upper
part of the chain, whose arc results in a force on the bead at rest in the beaker closest to the
chain in the air. This force has both a vertical and horizontal component in general, which
gives the bead an initial horizontal and vertical momentum.

The force of gravity eventually converts the upward vertical momentum into a downward
momentum.

The chain in the air is observed to be essentially vertical at points below the level of the
beaker, which means that the initial horizontal momentum of a bead has “disappeared” by
the time that it falls vertically. It must be that the momentum of a bead is transferred to
beads closer to the beaker as the bead travels in the arc.

Furthermore, once a quasi steady “flow” of the chain is achieved, the chain is nearly
vertical just above the beaker. Of course, the momentum imparted by the moving chain to
beads still at rest becomes part of the momentum of the moving chain, and is not “lost”.

The motion must be started by pulling on the chain, typically such that it initially
makes contact with the rim of the beaker, while the chain “lifts free” of the rim as the
motion develops into a quasi steady state. In this quasistatic configuration a bead has very
little horizontal momentum at both the beginning and the end of its motion, yet the bead
moves horizontally during the motion, first picking up horizontal speed, then losing it. The
horizontal momentum of the beads is essentially fixed in space, while the chain moves through
this fixed pattern of stored momentum, without carrying any horizontal momentum away
from the arc of the chain.

If we define the part of the chain that is in the air and above the height of the beaker as
the subsystem of interest, then the center of mass of this subsystem is at rest in the lab frame
(except for a tiny Zitterbewegung of amplitude ≈ interbead spacing). Meanwhile, the beads
have horizontal motion, and nonzero associated horizontal momentum Px. If we suppose in
the first photograph on p. 1 that the x-axis points to the left, then the momentum stored in
the chain points to the left: Px > 0.

This is a very peculiar situation, encountered mainly in “static” electromechanical sys-
tems in which the electromagnetic fields are static and the system appears to be at rest, such
that the stored electromagnetic field momentum is nonzero, while the system also possesses a
“hidden” mechanical momentum equal and opposite to the electromagnetic field momentum.
The unusual character of such examples was first pointed out by Shockley [16].2

2Other “mechanical” examples with some relation to the present case, but with simpler motion, are
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Before assessing whether or not the present example contains “hidden” momentum, we
first present a model of the motion which permits simple analytic estimates.

2.2 Model Calculation

A feature seen in the video of the leaping chain is that there is an initial transient phase
during which the height of the peak of the arc above the beaker increases, before stabilizing
at, say, say height h.

Analysis of the video indicates that h ≈ 0.25 m when the height of the beaker above the
floor was H ≈ 1.2 m, and the speed of the chain was v ≈ 6 m/s,3

http://www.empiricalzeal.com/2013/07/01/the-physics-of-that-gravity-defying-chain-of-metal-beads/

Also, distance between the point on the falling chain at the same height as the beaker and
the latter is roughly that same as the height h above the beaker of the top of the chain’s
trajectory.

2.2.1 Nonconservation of Energy

The kinetic energy mv2/2 of a bead of mass m on the moving chain is less than or equal to
the gravitational potential energy mgH while the bead falls to the floor at height H below
the initial position of the bead,

v ≤
√

2gH. (3)

While energy is conserved, to a good approximation, in the rapid acceleration of a bead
from rest,4 it appears from eq. (22) of sec. 2.2.3 that about 3/8 of the kinetic energy expected
from the change in gravitational potential energy of the chain is “lost” before the chain hits
the floor. This loss of kinetic energy is presumably due to inelastic collisions between the
beads and the links of the bead chain, which occurs primarily in the quasivertical portion
of the chain below the height of the beaker (where the observer tends to ignore possible
perturbations to the falling motion).

discussed in [17, 18, 19].
3The link actually reports v ≈ 3 m/s, but I suspect that there was a factor of 2 misunderstanding as to

the frame rate of the camera. I will clarify this later in our own experiments.
4We suppose the bead spacing along the chain is L when the chain is under tension, and that a bead

initially at rest is accelerated up to speed v over distance l (which may differ from L). This acceleration lasts
approximately Δt = l/(v/2) = 2l/v. During this time a bead, of mass m = ρL, where ρ is the (average)
linear mass density of the chain, takes on momentum ΔP = ρLv due to the tension T = ρgH in the chain
at the height of the beaker (as confirmed by the more detailed analysis in sec. 2.2.3 below). Hence,

T = ρgH =
ΔP

Δt
=

ρLv

2l/v
=

ρLv2

2l
, v2 = 2gH

l

L
. (4)

During this time the chain does work W = T l = ρgHl, and the gain in kinetic energy of the bead is
ΔKE = ρLv2/2 = ρgHl = W .

Hence, all of the work done by the chain in accelerating the beads appears as the kinetic energy of the
beads, to a good approximation.

A corollary of the above analysis is that the distance l over which a bead is accelerated equals the bead
spacing L, assuming that v2 = 2gH as holds if the potential energy released by the falling chain appears
entirely as its kinetic energy.
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However, it seems that kinetic energy can be lost even in the unfurling of a continuous
chain/string, as discussed in [4, 7].

2.2.2 Momentum of the Chain

We model the chain in a x-y coordinate system with origin at the top of the trajectory,
with the x-axis horizontal and to the left in the first figure on p. 1 (such that the velocity
component vx is always positive), and with the y-axis downwards.

The angle of the chain with respect to the positive x-axis is denoted as θ, such,

tan θ =
dy

dx
≡ y′, cos θ =

1√
1 + y′2 , sin θ =

y′√
1 + y′2 . (5)

The chain has constant speed v everywhere along the portion that is in the air. Hence the
components of the velocity and of the acceleration of the chain are,

vx =
dx

dt
≡ ẋ = v cos θ =

v√
1 + y′2 , vy = v sin θ =

vy′√
1 + y′2 = vxy

′, (6)

The element of the chain that occupies interval dx has length ds =
√

1 + y′2 dx, and

mass dm = ρ
√

1 + y′2 dx, where ρ is the (average) linear mass density of the chain. The
horizontal component on the momentum in the moving chain is,

Px =

∫
dm vx =

∫
ρ
√

1 + y′2 dx
v√

1 + y′2 = ρvw, (7)

independent of the shape of the trajectory of the chain, where w is the horizontal width of
that trajectory.

As the chain pulls on beads initially at rest in the beaker, it gives them momentum.
However, this momentum becomes part of that accounted for in eq. (7) and so does not
change the value of Px.

If the chain hits the floor with a nonzero horizontal velocity, then momentum would be
transferred from the chain to the floor, and Px would decrease. The empirical evidence is
that the chain is nearly vertical as it approaches the floor, such that transfer of momentum
to the floor appears to be a rather small effect, and Px is essentially constant at the initial
value given by pulling on the chain to start its motion.

In the model given below for the steady-state trajectory of the chain, its reaches the
floor with a small horizontal component vx to its velocity, whereas the actual vx at the floor
appears to be negligible.

2.2.3 Equilibrium (Steady-State) Trajectory of the Chain

The components of the acceleration of the chain follow from eq. (6) as,

ax = − vy′ẏ′

(1 + y′2)3/2
= − vy′y′′vx

(1 + y′2)3/2
= − v2y′y′′

(1 + y′2)2
, ay = vxẏ

′ + axy
′ =

v2y′′

(1 + y′2)2
, (8)
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using ẏ′ = y′′vx. Note that y′′ > 0 on the downward-arcing trajectory of the chain, since y
is positive downwards.

The tension in the chain is T , and we write T (0) = T0 for the tension at the top of the
trajectory, where x = y = y′ = 0.

The horizontal equation of motion for an element of the chain is,

dm ax = − ρv2y′y′′

(1 + y′2)3/2
dx =

dTx

dx
dx =

d

dx

(
T√

1 + y′2

)
dx =

T ′(1 + y′2) − Ty′y′′

(1 + y′2)3/2
dx, (9)

(T − ρv2)y′y′′ = T ′(1 + y′2). (10)

Similarly, the vertical equation of motion is (for y positive downwards),

dm ay =
ρv2y′′

(1 + y′2)3/2
dx = dm g +

dTy

dx
dx = ρg

√
1 + y′2 dx +

d

dx

(
Ty′√
1 + y′2

)
dx

= ρg
√

1 + y′2 dx +
T ′y′(1 + y′2) + T ′y′′

(1 + y′2)3/2
dx, (11)

(T − ρv2)y′′ + T ′y′(1 + y′2) = −ρg(1 + y′2)2. (12)

Multiplying eq (12) by y′ and using eq. (10), we find,

T ′ = −ρgy′, T = T0 − ρgy. (13)

That is, the tension in the chain is highest at the top of the trajectory, and, at a lower height
y, is less than the maximum tension T0 by the weight ρgy of length y of the chain. The floor
is at y = h + H, and the tension T goes to zero there. Hence,

T0 = ρg(h + H). (14)

Using eq. (13) in (10), we have,

(−ρgy + T0 − ρv2)y′y′′ = −ρgy′(1 + y′2),
y′y′′

1 + y′2 =
ρgy′

ρgy − T0 + ρv2
, (15)

which integrates to,

1

2
ln(1 + y′2) = ln(ρgy − T0 + ρv2) − lnC. (16)

At the top of the trajectory, y = 0 = y′, so,

C = ρv2 − T0 = ρ[v2 − g(h + H)], y′′(y = 0) =
ρg

C
≡ 1

R0
, (17)

where R0 is the radius of curvature of the trajectory at its apex. The constant C must be
positive, which implies (recalling eq. (3)) that,√

2gH > v >
√

g(H + h). (18)
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Then, eq. (16) leads to,

1 + y′2 =
(
1 +

ρgy

C

)2

=

(
1 +

y

R0

)2

, y′(x > 0) =

√(
1 +

y

R0

)2

− 1 =

√
y2

R2
0

+ 2
y

R0
,(19)

which integrates to,

|x| = R0 ln

[
2 +

y

R0
+ 2

√
y2

R2
0

+ 2
y

R0

]
+ D. (20)

To have x = 0 = y at the top of the trajectory, we need D = −R0 ln 2, and hence,

|x|
R0

= ln

⎡
⎣1 +

y

R0
+

√(
1 +

y

R0

)2

− 1

⎤
⎦ , e−|x|/R0 = 1 +

y

R0
+

√(
1 +

y

R0

)2

− 1. (21)

The figure below shows a trajectory computed from eq. (21) for scale factor R0 = 1. The
behavior in the photograph on p. 1, in which the height h of the top of the arc above the
beaker is roughly equal to the width of the curve at the height of the beaker, corresponds
to a beaker position of (-2.5,5) in the scaled coordinates. That is, fitting to the shape of the
upper portion of the arc implies, noting from the figure that h ≈ H/7,

ρgh

C
= 5,

gh

5
=

C

ρ
= v2 − g(h + H), v2 = g

(
H +

6h

5

)
≈ 7gH

6
, R0 =

h

5
, (22)

in “reasonable” agreement with the reported data.
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May 11, 2024. It is not evident that our eq. (21) for a model of the steady-state motion
of the a “chain fountain” is an inverted catenary (although this is consistent with the figure
above). Our model is equivalent to the (more succinct) discussion by Airy (1858) in Secs. 3-7
of [20], that noted the shape is a catenary. This was a preliminary exercise in which the
large effect of water drag was ignored in an analysis on the shape of a telegraph cable being
launched from a moving ship. Airy tacitly assumed that our h = 0, and that the cable did
not rise before falling, although the latter possibility had been noted by Thomson [1] in 1857.

There seems to be little further discussion of the “chain fountain” until it is mentioned in
Chap. 5 of the PhD thesis of Perkins (1986) [21], where it is called a “maximum catenary”.

2.2.4 Wave Velocity

The speed of transverse waves on the chain is given by,

vwave(y) =

√
T

ρ
=
√

g(H + h − y), (23)

which is maximal at the top of the arc, vwave,max =
√

g(H + h) < v, recalling eq. (18).
However, the wave velocity at the top is quite close to the chain velocity v.5

A famous result is that if the wave velocity equals the speed of a rope/chain, then a
perturbed waveform which propagates in the opposite direction to the motion of the chain
appears to be “frozen” in space. See, for example, [23].

The author does not interpret the video as providing evidence for counterpropagating
waves with “frozen” waveforms. Rather, the chain just above the beaker shows substantial
transverse perturbations which are quickly damped, such that these perturbations are hardly
visible after the peak of the arc. This rapid damping gives the waveform of the chain a kind
of stability, rather than vwave being close to the chain speed v.

2.2.5 Transient Motion (May 11, 2024)

It is observed that the steady-state height h of the peak of the moving chain’s shape (above
the coil of chain in the “beaker”) can be greater than the initial value of h when the chain
is first pulled into motion. This has led many people (starting perhaps with [5]) to note
that the “beaker” can exert an upward force on the chain that contributes to the upward
momentum of the chain near the beaker.

Such an upward force is (to me) implausible for a chain in the form of an ideal, thin
string/rope (which can exhibit the behavior of a “chain fountain”, as in the second video
linked in footnote 1 above). For a chain with rigid links, the story is more intricate, as noted,
for example, in [25]. In the case of a chain of rigid links, it is possible for an upward force to
be transmitted from one link to another. Such a force can influence the time dependence of
the transient phase of a “chain fountain”, but it has little effect on the steady-state shape
of the moving “chain”.

It remains that any analysis of the transient motion is complicated.

5An amusing factoid about waves on vertical chains is that the acceleration of a pulse is a = dv(y)/dt =
(dv/dy)(dy/dt) = ±g/2 [22].
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2.3 “Hidden” Momentum

Consideration of “hidden” momentum in electromechanical systems has led to a general
definition (inspired by discussions with D. Vanzella [24]) of this concept, as given above in
eq. (1).

In the present example, vcm = 0 = vboundary for the subsystem consisting, say, of the arc
of the chain above the beaker (0 ≤ y ≤ h), while that portion of the moving chain possesses
nonzero horizontal momentum Px,

Px =

∫ w/2

−w/2

ρ
√

1 + y′2 dx γvx = γρvw. (24)

where w is the horizontal width of the subsystem, and,

γ =
1√

1 − v2/c2
≈ 1 +

v2

2c2
. (25)

Hence, Px − Mvcm,x = Px is nonzero.
The boundary of the subsystem has two points, x = ±w/2, y = h, at the ends of arc above

the height of the beaker, and the boundary integral in eq. (1) has horizontal component,∮
boundary

(x − xcm) (p− ρvb) · dArea = 2
w

2
γρv = Px, (26)

since vb = 0 at the boundary points, and dArea points in the negative-z direction. Thus,
the “hidden” momentum according to definition (1) is zero,

Phidden = P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea

= Px − 0 − Px = 0. (27)

The considerations which led to the general definition (1) showed that the “hidden”
momentum can also be expressed in a more abstract form involving the time component f0

of the 4-force which the subsystem exerts on the rest of the system. In the present example
the subsystem interacts with the rest of the Universe via gravity, and via the contact forces
at the two boundary points. These surface-contact forces do not contribute to the volume
integral in the relation,

Phidden = −
∫

f0

c
(x − xcm) dVol. (28)

To evaluate f0 via eq. (1) we note that the top row of the stress-energy tensor of the arc
of the chain is,

T 0μ = (γρ[c2 − gy], γρvx, γρvy, 0) = γρ

(
c2 − gy,

v√
1 + y′2 ,

vy′√
1 + y′2 , 0

)
, (29)

such that ,

f0
chain =

∂T 0μ

∂xμ
= 0. (30)

Hence, the “hidden” momentum of the arc of the chain is also zero according to eq. (28).
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