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1 Problem

In view of recent interest in orbital-angular-momentum modes in optical fibers,1 discuss an-
gular momentum in the modes of a circular waveguide of radius a, with perfectly conducting
walls and filled with a medium of index of refraction n.

2 Solution

Circular-waveguide modes were first discussed in 1888 by Heaviside, pp. 443-467 of [2], in
1893 by J.J. Thomson in sec. 300 of [3], in 1894 by Larmor [4], and then by Rayleigh in 1897
[5].2 Although these modes are “well known”, discussion of them seldom includes mention
of angular momentum.3

2.1 General Relations

We first recall the general formalism appropriate for discussion of waves in pipes along the z-
axis.4 The dependence on z and t of all field components is taken to have the form ei(kzz−ωt).
Inside the waveguide these field components ψ obey the Helmholtz wave equation,

0 =

(
∇2 +

n2
indexω

2

c2

)
ψ =

(
∇2

⊥ +
∂2

∂z2
+ k2

0

)
ψ =

(∇2
⊥ − k2

z + k2
0

)
ψ =

(∇2
⊥ + k2

)
ψ, (1)

where c is the speed of light in vacuum, nindex =
√
εrelativeμrelative is the index of refraction

at angular frequency ω of the (linear, isotropic) medium inside the guide, and,

k0 =
nindexω

c
=

√
εμω , k2 = k2

0 − k2
z . (2)

Note that kz and not k is propagation constant.
The use of the decomposition ∇2 = ∇2

⊥ + ∂2/∂z2 in the wave equation (1) suggests a
use of a similar decomposition of the gradient operator, ∇ = ∇⊥ + ∇z, such that two of
Maxwell’s equations can be written as,

− ∂B

∂t
= iωμH = iωμ(H⊥ + Hz) = ∇ × E = ∇⊥ × (E⊥ + Ez) + ∇z × (E⊥ + Ez), (3)

∂D

∂t
= −iωεE = iωμ(E⊥ + Ez) = ∇ × H = ∇⊥ × (H⊥ + Hz) + ∇z × (H⊥ + Hz). (4)

1See, for example, [1].
2Technical development of waveguides was precipitated by two important papers from Bell Labs in 1936

[6, 7]. The latter paper also discussed what would now be called optical fibers. Simultaneous work by Barrow
[8] is recounted in [9].

3This topic has been considered in [10, 11].
4See, for example, chap. 13 of [12] or sec. 8.2 of [13].
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In particular, ∇⊥ × E⊥ = iωμHz and ∇⊥ × H⊥ = −ωεEz and ∇z × Ez = 0 = ∇z × Hz,
such that

iωμH⊥ = ∇⊥ × Ez + ∇z ×E⊥ = ∇⊥ × Ez + ikz ẑ × E⊥, (5)

−iωεE⊥ = ∇⊥ × Hz + ∇z ×H⊥ = ∇⊥ × Hz + ikz ẑ ×H⊥. (6)

Substituting eqs. (5) and (6) into one another, we obtain,

iω2εμH⊥ = ωε∇⊥ × Ez − kz ẑ × (∇⊥ × Hz + ikz ẑ × H⊥), (7)

ik2
0H⊥ = ωε∇⊥ × Ez − kz(∇⊥Hz − ikzH⊥), (8)

H⊥ =
ikz∇⊥Hz − ωε∇⊥ ×Ez

k2
0 − k2

z

=
ikz∇⊥Hz − ωε∇⊥ × Ez

k2
, (9)

and similarly,

E⊥ =
ikz∇⊥Ez + ωμ∇⊥ × Hz

k2
. (10)

That is, the transverse fields can be deduced from the longitudinal fields.
Furthermore, since the field equations are linear, we can decompose the fields into trans-

verse electric modes (TE, with Ez = 0) and transverse magnetic modes (TM, with Hz = 0).
Then, TE waves can be deduced from HTE

z according to,

HTE
⊥ =

ikz∇⊥HTE
z

k2
, ETE

⊥ =
ωμ∇⊥ × HTE

z

k2
= −ωμ

kz
ẑ × HTE

⊥ , (11)

where the last form follows from eq. (5). Similarly, TM waves can be deduced from ETM
z

according to,

ETM
⊥ =

ikz∇⊥ETM
z

k2
, HTM

⊥ = −ωμ∇⊥ × ETM
z

k2
=
ωε

kz
ẑ × ETM

⊥ , ETM
⊥ = − kz

ωε
ẑ ×HTM

⊥ .(12)

Recall that the quantity,

Z =

√
μ

ε
=

√
μ0

ε0

√
μrelative

εrelative
= 377

√
μrelative

εrelative
Ohms (13)

is often called the impedance of the medium.5 However, in waveguide literature one also
finds the definitions,

ZTE =

√
μ

ε

k0

kz
=
ωμ

kz
, ZTM =

√
μ

ε

kz

k0
=
kz

ωε
, (14)

5This usage typically refers to “free-space” plane waves, far from any conductors, where for wave prop-
agation in the z-direction, kz = k0 and E = ZH × ẑ. Waves inside hollow conductors are not “free”, but
rather are “inhomogeneous/evanescent” in the sense of these terms as used in a decomposition of the waves
into electromagnetic plane waves [14]. As seen in sec. 2.2 below, guided waves with very small wavelengths
have kz ≈ k0 so in this limit, where in some sense much of the wave is far from the conductors, the definitions
(13) and (14) coincide.
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used in conjunction with the relations,

ETE
⊥ = ZTEHTE

⊥ × ẑ, ETM
⊥ = ZTMHTM

⊥ × ẑ. (15)

The time-average flow of electromagnetic energy in the guide is described by the Poynting
vector,

〈S〉 =
1

2
Re(E × H�) =

1

2
Re(E⊥ × H�

⊥) +
1

2
Re(E⊥ × H�

z + Ez × H�
⊥) (16)

〈
STE

〉
=

ZTE

2
Re
[(

HTE
⊥ × ẑ

)× H�
⊥

TE
]
+
ZTE

2
Re
[(

HTE
⊥ × ẑ

)×H�
z
TE
]

=
ZTE

2

∣∣HTE
⊥
∣∣2 ẑ +

ZTE

2
Re
(
H�

z
TEHTE

⊥
)
, (17)

〈
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〉
=

1

2ZTM
Re
[
ETM

⊥ × (ẑ ×E�
⊥

TM
)]

+
1

2ZTM
Re
[
ETM

z × (ẑ × E�
⊥

TM
)]

=
1

2ZTM

∣∣ETM
⊥
∣∣2 ẑ +

1

2ZTM
Re
(
ETM

z E�
⊥

TM
)
. (18)

As expected, energy flows down the guide (parallel to the z-axis), but lines of (time-average)
energy flow can have components in the transverse plane, such that these “streamlines”
follow twisted paths corresponding to the presence of angular momentum in the wave.6

The time-average (Minkowski) density of momentum in the wave is given by,

〈p〉 =
1

2
Re(D × B�) =

〈S〉
εμ

=
n2

index 〈S〉
c2

, (19)

and the time-average density of angular momentum is,

〈l〉 = r × 〈p〉 = r × n2
index 〈S〉
c2

. (20)

2.2 Circular Waveguides

Turning at last to the special case of waves inside a circular cylinder with a perfect conductor
at radius r = a in a cylindrical coordinate system (r, θ, z), we can deduce the waveforms
from either the scalar function ψ = Hz (TE waves) or ψ = Ez (TM waves), where ψ obeys
the wave equation (1),

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2 + (k2
0 − k2

z)ψ = 0 (21)

As we seek solutions that could exhibit angular momentum, we consider the form,

ψ = Rmn(r) e±imθ ei(kz,mnz−ωt), (22)

6The nonzero, time-average, transverse flow of energy should not be called “reactive” as in sec. 8.5 of
[13], as this term is reserved for instantaneous flow of energy whose time average is zero (for example, in the
fields outside the conductors of an LC circuit, or those near an antenna where one speaks of the “reactive
near field” as that part of the field that does not contribute to the flow of energy to “infinity”). See [15] for
discussion of some subtleties to the use of the term “reactance” for antennas.

3



where here n is not the index of refraction, and m is a non-negative integer. Then, the wave
equation (21) reduces to,

1

r

d

dr

(
r
dRmn

dr

)
+

(
k2

0 − k2
z −

m2

r2

)
Rmn = 0. (23)

This is a form of Bessel’s equation, and we write the relevant solutions as,

Rmn(r) = Jm(kmnr), where kmn =
√
k2

0 − k2
z,mn, (24)

and Jm is an “ordinary” Bessel function of the first kind.
The waves must obey the perfect-conductor boundary condition at r = a that the tan-

gential component of the electric field vanish there. Hence, for TM waves, where ψ = ETM
z ,

we have that,

Jm(kTM
mn a) = 0. (25)

We adopt the notation,

Jm(umn) = 0, (26)

for the zeroes of the Bessel functions, such that,

u01 ≈ 2.405, u02 ≈ 5.520, u03 ≈ 8.564, u04 ≈ 11.791, · · ·
u11 ≈ 3.832, u12 ≈ 7.016, u13 ≈ 10.174, u14 ≈ 13.324, · · · (27)

u21 ≈ 5.136, u22 ≈ 8.417, u23 ≈ 11.620, u24 ≈ 14.796, · · ·

Then,

kTM2

mn =
u2

mn

a2
= k2

0 − kTM2

z,mn, (28)

and the (so-called) guide wavelength in z is given by,

λTM
z,mn =

2π

kTM
z,mn

=
2π√

k2
0 − kTM2

z,mn

=
2πa√

(2πa/λ0)2 − u2
mn

=
λ0√

1 − (λ0umn/2πa)2
, (29)

where the “free-space” wavelength at frequency ν = 2πω is,

λ0 =
2π

k0

=
√
εrelativeμrelative

ν

c
. (30)

Waves propagate only for sufficiently short wavelengths (high frequencies); the longest pos-
sible TM wavelength (in free space) is for the 01 mode, with λTM

max = 2π/kTM
01 = 2.61a.
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The TM wave fields can now be written as, using eq. (12) (with E0 complex), noting
eq. (28),7

ETM
z = E0Jm

(r
a
umn

)
e±imθ ei(kTM

z,mnz−ωt), (31)

ETM
r =

iE0k
TM
z,mna

umn
J ′

m

(r
a
umn

)
e±imθ ei(kTM

z,mnz−ωt), (32)

ETM
θ = ∓mE0k

TM
z,mna

2

u2
mnr

Jm

(r
a
umn

)
e±imθ ei(kTM

z,mnz−ωt), (33)

HTM
r = −E

TM
θ

ZTM
, (34)

HTM
θ =

ETM
r

ZTM
. (35)

The time-average flow of energy inside the guide follows from eqs. (18) as,

〈
STM

〉
=

1

2ZTM

∣∣ETM
⊥
∣∣2 ẑ +

1

2ZTM
Re
(
ETM

z E�
⊥

TM
)

=
|E0|2
2ZTM

kTM
z,mna

2

u2
mn

{
kTM

z,mna
2

u2
mn

[
m2

r2
J2

m

(r
a
umn

)
+
u2

mn

a2
J ′2

m

(r
a
umn

)]
ẑ

∓m
r
J2

m

(r
a
umn

)
θ̂
}
. (36)

There is no radial component to the time-average energy flow, whose streamlines follow
helices of constant radius; however, the pitch of these helices is a function of radius, so the
flow pattern is complex.

The time-average momentum density per unit length in the guide is, for TM waves,

〈
PTM

〉
=

n2
index

c2
π |E0|2
ZTM

(
kTM

z,mna
2

u2
mn

)2
u2

mn

a2

∫ a

0

r dr

[
m2a2

r2u2
mn

J2
m

(r
a
umn

)
+ J ′2

m

(r
a
umn

)]
ẑ

=
n2

index

c2
π |E0|2
ZTM

kTM2

z,mna
4

u2
mn

∫ 1

0

x dx

[
m2

u2
mnx

2
J2

m(umnx) + J ′2
m(umnx)

]
ẑ

=
n2

index

c2
π |E0|2
2ZTM

kTM2

z,mna
4

u2
mn

∫ 1

0

x dx
[
J2

m−1(umnx) + J2
m+1(umnx)

]
ẑ

=
n2

index

c2
π |E0|2
4ZTM

kTM2

z,mna
4

u2
mn

[
J2

m−1(umn) + J2
m+1(umn)

]
ẑ

=
n2

index

c2
π |E0|2
2ZTM

kTM2

z,mna
4

u2
mn

J ′2
m(umn) ẑ =

n2
index

c2
π |E0|2
2ZTM

kTM2

z,mna
4

u2
mn

J2
m+1(umn) ẑ, (37)

recalling eq. (19), noting that Jm−1 + Jm+1 = 2mJm(x)/x, Jm−1 − Jm+1 = 2dJm(x)/dx,
Jm(umn) = 0, Jm−1(umn) = −Jm+1(umn) = J ′

m(umn), and using eq. 5.11(11), p. 135 of [17]

7We (more or less) follow the notation of sec. 9.18 of [16], although that section used cosmθ and sinmθ
rather than e±mθ in the wavefunctions, which implies that the angular momentum is zero.
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(due to Lommel),∫ x

x dx J2
m(kx) =

x2

2

[
J2

m(kx) − Jm−1(kx)Jm+1(kx)
]

=
x2

2

[(
1 − m2

k2x2

)
J2

m(kx) + J ′2
m(kx)

]
.(38)

The time-average angular-momentum density per unit length is, recalling eq. (20) and using
eq. (38) for Jm(umn) = 0,

〈
LTM

〉
= ∓n

2
index

c2
mπ |E0|2
ZTM

kTM
z,mna

2

u2
mn

∫ a

0

r dr J2
m

(r
a
umn

)
ẑ

= ∓n
2
index

c2
mπ |E0|2
ZTM

kTM
z,mna

4

u2
mn

∫ 1

0

x dx J2
m(umnx) ẑ

= ∓n
2
index

c2
mπ |E0|2
2ZTM

kTM
z,mna

4

u2
mn

J ′2
m(umn) ẑ = ∓m

〈
PTM

〉
kTM

z,mn

. (39)

For TE waves where ψ = HTE
z and ETE

θ ∝ ∂HTE
z /∂r according to eq. (11), the condition

that ETE
θ (r = a) = 0 implies that,

J ′
m(kTE

mna) = 0. (40)

We adopt the notation,

J ′
m(u′mn) = 0, (41)

for the zeroes of the derivatives of the Bessel functions, such that,

u′01 ≈ 3.832, u′02 ≈ 7.016, u′03 ≈ 10.174, u′04 ≈ 13.324, · · ·
u′11 ≈ 1.841, u′12 ≈ 5.331, u′13 ≈ 8.536, u′14 ≈ 8.536, · · · (42)

u′21 ≈ 3.054, u′22 ≈ 6.706, u′23 ≈ 9.970, u′24 ≈ 9.970, · · ·
Then,

kTE2

mn =
u′2mn

a2
= k2

0 − kTE2

z,mn, (43)

and the guide wavelength (in z) is given by,

λTE
z,mn =

2π

kTE
z,mn

=
2π√

k2
0 − kTE2

mn

=
2πa√

(2πa/λ0)2 − u′2
mn

, (44)

The maximum (free-space) TE wavelength is for the 11 mode, with λTE
max = 3.41a, which is

longer than λTM
max.

The TE wave fields can now be written using eq. (11) as,

HTE
z = H0Jm

(r
a
u′mn

)
e±imθ ei(kTE

z,mnz−ωt), (45)

HTE
r =

iH0k
TE
z,mna

u′mn

J ′
m

(r
a
u′mn

)
e±imθ ei(kTM

z,mnz−ωt), (46)

HTE
θ = ∓mH0k

TE
z,mna

2

u′2mnr
Jm

(r
a
u′mn

)
e±imθ ei(kTM

z,mnz−ωt), (47)

ETE
r = ZTEHTE

θ , (48)

ETE
θ = −ZTEHTE

r . (49)
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The time-average flow of energy inside the guide follows from eqs. (17) as,

〈
STE

〉
=

ZTE

2

∣∣HTE
⊥
∣∣2 ẑ +

ZTE

2
Re
(
H�

z
TEHTE

⊥
)

=
ZTE |H0|2

2

kTE
z,mna

2

u′2mn

{
kTE

z,mna
2

u′2mn

[
m2

r2
J2

m

(r
a
u′mn

)
+
u′2mn

a2
J ′2

m

(r
a
u′mn

)]
ẑ

∓m
r
J2

m

(r
a
u′mn

)
θ̂
}
. (50)

Again, the energy-flow lines are helices of constant radii.
The time-average momentum density per unit length in the guide is,

〈
PTE

〉
=

n2
index

c2
πZTE |H0|2

(
kTE

z,mna
2

u′2mn

)2
u′2mn

a2

∫ a

0

r dr

[
m2a2

r2u′2mn

J2
m

(r
a
u′mn

)
+ J ′2

m

(r
a
u′mn

)]
ẑ

=
n2

index

c2
πZTE |H0|2

kTE2

z,mna
4

u′2mn

∫ 1

0

x dx

[
m2

u′2mnx
2
J2

m(u′mnx) + J ′2
m(u′mnx)

]
ẑ

=
n2

index

c2
πZTE |H0|2

2

kTE2

z,mna
4

u′2mn

∫ 1

0

x dx
[
J2

m−1(u
′
mnx) + J2

m+1(u
′
mnx)

]
ẑ

=
n2

index

c2
πZTE |H0|2

4

kTE2

z,mna
4

u′2mn

{
J2

m−1(u
′
mn) + J2

m+1(u
′
mn) − Jm[Jm−2(u

′
mn) + Jm+2(u

′
mn)]

}
ẑ

=
n2

index

c2
πZTE |H0|2

4

kTE2

z,mna
4

u′2mn

[
2m2

u′2mn

J2
m(u′mn) − 2

(
2m2

u′2mn

− 1

)
J2

m(u′mn)

]
ẑ

=
n2

index

c2
πZTE |H0|2

2

kTE2

z,mna
4

u′2mn

(
1 − m2

u′2mn

)
J2

m(u′mn) ẑ, (51)

using eq. (38) and that Jm−1 + Jm+1 = 2mJm(x)/x, Jm−1 − Jm+1 = 2J ′
m, so J ′

m(u′mn) =
0 implies that Jm−1(u

′
mn) = Jm+1(u

′
mn) = mJm(u′mn)/u

′
mn.8 The time-average angular-

momentum density per unit length is, using eq. (38) for J ′
m(u′mn) = 0,

〈
LTE

〉
= ∓n

2
index

c2
mπZTE |H0|2

kTE
z,mna

2

u′2mn

∫ a

0

r dr J2
m

(r
a
u′mn

)
ẑ

= ∓n
2
index

c2
mπZTE |H0|2

kTE
z,mna

4

u′2mn

∫ 1

0

x dx J2
m(u′mnx) ẑ

= ∓n
2
index

c2
mπZTE |H0|2

2

kTE
z,mna

4

u′2mn

(
1 − m2

u′2mn

)
J2

m(u′mn) ẑ = ∓m
〈
PTE

〉
kTE

z,mn

. (52)

In a quantum view, photons of the waveguide modes carry momentum P = �kz ẑ, and
hence these photons have angular momentum L = ∓m� ẑ.9 The calculation here, L = r×P,
corresponds to orbital angular momentum.

8Some authors imply that the result (51) should be more evident, but I had to slog through the above.
9As k 	= ω/c, the waveguide photons are “virtual” and the guided waves are “evanescent”. Regarding

the latter, see sec. 2.8 of [14].
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A general discussion of “orbital” and “spin” angular momentum of classical electromagnetic fields
[18] leads to expressions for their volume densities,

lEM,orbital = r ×
∑3

j=1 Erot, j∇Arot, j

4πc
, lEM,spin =

Erot ×Arot

4πc
, (53)

where the rotational part of a vector field F obeys ∇ · Frot = 0, and we note that the rotational
part of the vector potential A is gauge invariant (see sec. 2.1 of [18]). In the present examples,
∇ · E = ∇ · D/ε = 0 for both the TE and TM waves, such that Erot = E. It is particularly simple
with wave fields to work in the Gibbs’ gauge, where the scalar potential is identically zero, and
A = iE/ω. Then, ∇ · A = 0, so that Arot = A, and lEM,spin = Erot ×Arot/4πc = 0.
That is, the field angular momentum in these examples is purely orbital, according to eq. (53).

2.2.1 Phase, Group and Energy-Flow Velocities

The Poynting vector S has dimensions of energy density time velocity, which suggests that
we define an energy-flow velocity as,10

vE =
S

u
=

E× H

u
, (54)

where the electromagnetic energy density is,

u =
E · D + B · H

2
=
εE2 + μH2

2
, (55)

with E and H are purely real in eqs. (54)-(55). However, both S and u vary rapidly in space
and time, so their use in eq. (54) would lead to a velocity field with dramatic fluctuations.
These fluctuations could be smoothed by considering only the time-average densities,

〈S〉 =
Re(E × H�

2
, 〈u〉 =

Re(E · D� + B · H�)

4
=
ε |E|2 + μ |H|2

4
, (56)

where the time-average Poynting vectors 〈S〉 for TM and TE modes are given in eqs. (36)
and (50). The time-average field energy density for TM modes is,

〈
uTM

〉
=

ε
∣∣ETM

∣∣2 + μ
∣∣HTM

∣∣2
4

=
ε
(∣∣ETM

z

∣∣2 +
∣∣ETM

⊥
∣∣2)+ μ

∣∣ETM
⊥
∣∣2 /ZTM2

4

=
ε

4

[∣∣ETM
z

∣∣2 +
∣∣ETM

⊥
∣∣2(1 +

k2
0

kTM2

z,mn

)]

=
ε |E0|2

4

{
J2

m

(r
a
umn

)
(57)

+

(
1 +

k2
0

kTM2

z,mn

)
kTM2

z,mna
4

u4
mn

[
m2

r2
J2

m

(r
a
umn

)
+
u2

mn

a2
J ′2

m

(r
a
umn

)]}
.

10J.J. Thomson developed the notion of field momentum density (1) essentially according to p = S/c2 =
uv/c2 [3, 19]. See also eq. (19), p. 79 of [20], and p. 6 of [21]. The idea that an energy flux vector is the
product of energy density and energy flow velocity seems to be due to Umov [22] (1874), based on Euler’s
continuity equation [23] for mass flow, ∇·(ρv) = −∂ρ/∂t. Poincaré applied this notion to an électromagnétic
fluide fictif between eqs. (3) and (4) of [24] (1900). The energy-flow velocity (54) appeared on p. 392 of the
textbook [25] and on p. 794 of [26]. See also [27]-[30]. Nonstandard definitions are considered in [31]-[33].
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The ratio
〈
STM(r)

〉
/
〈
uTM(r)

〉
is a complicated function of radius r, and seems still to be

too fine-grained a definition for the energy-flow velocity of the wave.
A coarser-grained definition is to consider the ratio

∫ 〈
STM

z

〉
dArea/

〈
UTM

〉
of the total

power flowing down the guide to the energy density per unit length, where
∫ 〈

STM
z

〉
dArea

has been given to within a factor in eq. (37). Of course, this definition averages over the
helical flow of the Poynting vector 〈S〉.

The energy density per unit length is,

〈
UTM

〉
=

πε |E0|2
2

∫ a

0

r dr

{
J2

m

(r
a
umn

)
+
(
kTM2

z,mn + k2
0

) a2

u2
mn

[
m2a2

u2
mnr

2
J2

m

(r
a
umn

)
+ J ′2

m

(r
a
umn

)]}

=
πε |E0|2 a2

2

∫ 1

0

x dx

{
J2

m(umnx) +
(
kTM2

z,mn + k2
0

) a2

u2
mn

[
m2

u2
mnx

2
J2

m(umnx) + J ′2
m(umnx)

]}

=
πε |E0|2 a2

4
J ′2

m(umn)

[
1 +

(
kTM2

z,mn + k2
0

) a2

u2
mn

]
=
πε |E0|2

2

k2
0a

4

u2
mn

J ′2
m(umn). (58)

Hence, the coarse-grained energy-flow velocity for TM waves is,

ṽTM
E ≡

∫ 〈
STM

z

〉
dArea

〈UTM〉 =
c2

n2
index

〈
PTM

〉
〈UTM〉 =

1

ZTMε

kTM2

z,mn

k2
0

ẑ =
c

nindex

kTM
z,mn

k0
≤ c

nindex
ẑ. (59)

A similar calculation for TE waves gives the same form.

A different approach to characterization of wave velocities is the so-called eikonal method,
introduced by Sommerfeld and Runge [34]. We follow two papers of Whitham [35, 36], which
are variants of arguments by Landau [37, 38]. See also sec. 45 of [39], and the author’s note
[40].

An argument applicable to waves of all types that are far from localized sources is based
on the approximation that any scalar component of the wave function can be written as,

ψ = A(r, t)eiϕ(r,t), (60)

where the A is a slowly-varying (complex) amplitude and ϕ is a rapidly varying (real) phase
(sometimes also called the eikonal). In any small region (far from the source) the form (60)
is nearly a plane wave ei(k·r−ωt) with wave vector k and angular frequency ω obtained from
the first-order terms in a Taylor expansion of the phase ϕ,

ϕ(r, t) = ϕ0 + ∇ϕ · r +
∂ϕ

∂t
t+ ..., (61)

such that we identify,

k = ∇ϕ, and ω = −∂ϕ
∂t

. (62)

The locally plane wave has phase velocity,

vp =
ω

k
k̂ =

ω

k2
k, (63)
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where k = |k|. It also follows from eq. (62) that,

∂k

∂t
= −∇ω. (64)

The plane wave ei(k·r−ωt) is at least an approximate solution to some wave equation.
Using the plane wave as a trial solution to this wave equation leads to a functional relation
between ω and k (and possibly r as well) called the dispersion relation, which we write as,

ω = ω(k, r). (65)

The dispersion relation can be used to generate the equations of the geometric or ray approx-
imation as follows.

We first note that since k = ∇ϕ we have that ∇ × k = 0, i.e., ∂ki/∂xj = ∂kj/∂xi.
Then, if we use the dispersion relation in eq. (64), the ith component of that equation can
be rewritten as,

∂ki

∂t
= − ∂ω

∂xi
−
∑

j

∂ω

∂kj

∂kj

∂xi
= − ∂ω

∂xi
−
∑

j

∂ω

∂kj

∂ki

∂xj
= − ∂ω

∂xi
−
∑

j

vg,j
∂ki

∂xj
, (66)

where,

vg =
∂ω

∂k
= ∇kω (67)

is the group velocity, so that

dk

dt
=
∂k

∂t
+ (vg · ∇)k = −∂xω. (68)

We can interpret eq. (68) as implying that for an observer who moves with velocity,

vg =
dr

dt
= ∇kω (69)

in a homogeneous medium (i.e., one for which ∂xω = 0), the wave vector k remains constant.11

This result leads us to introduce the concept of a ray (in ordinary space) whose direction
is that of the group velocity vg. In a homogeneous medium the wave vector k is constant
along a ray (although k is not necessarily parallel to vg

12

Furthermore, in a homogeneous medium the gradient ∇kω is constant along a ray, since
ω is only a function of k in such a medium, and k is constant along a ray. Hence, the

11For waveguide modes with nonzero m (which carry angular momentum), eqs. (2) and (28) can be
combined to give,

ω(k, r) =
k0c

nindex
=

c

nindex

√
k2

z,mn +
u2

mn

a2
=

c

nindex

√
k2

θ,m + k2
z,mn − m2

r2
+

u2
mn

a2
, (70)

which depends on the radius r if one uses the form that also depends on kθ,m. Hence, the guide medium,
even if vacuum, is formally not “homogeneous” in the present sense for waves that carry angular momentum.
In this case, the wave vector k is not expected to be (and is not) constant along a group-velocity ray.

12See, for example, the figure on p. 5 of [41].
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group velocity vector vg = ∇kω is constant along a ray, and the rays are straight lines in
a homogeneous medium.This result holds even if the medium is anisotropic, and it holds
whether or not the medium is linear.

If we suppose a ray to be associated with the Hamiltonian,

H = ω(r,k) (71)

then Hamilton’s equations of motion,

dr

dt
= ∇kH = ∇kω, and

dk

dt
= −∇H = −∇ω, (72)

lead to the same forms as eqs. (68)-(69). Thus, the ray concept, which derives from the view
of Fermat that light is a particle phenomenon, together with the principles of Hamiltonian
mechanics, leads us to suppose that the energy of a particle of light is proportional is its
frequency. Although this argument is perhaps the most compact derivation of so-called
Hamiltonian optics, it was not made by Hamilton. Rather, it was Einstein [42] who first
noted the relation between frequency and energy for quanta of light, while the use of eqs. (71)-
(72) as the basis for geometric optics appears to be due to Landau [37].13,14

For the present case of guided waves with wavefunctions of the form (22), the eikonal is,

ϕ = kz,mnz ±mθ − ωt, kz,mn =

√
k2

0 −
u2

mn

a2
=

√
n2

indexω
2

c2
− u2

mn

a2
, (73)

so the wave vector k in the sense of the eikonal method is,

k = ∇ϕ = kz,mn ẑ ± m

r
θ̂, k =

√
k2

θ,m + k2
z,mn =

√
k2

0 +
m2

r2
− u2

mn

a2
. (74)

The eikonal phase velocity is,

vp =
ω

k2
k , vp =

ω

k
=

c

nindex

k0

k
. (75)

such that lines of the phase-velocity field are helices with pitch that depends on radius r.
The eikonal group velocity follows from the last form of eq. (70) as,

vg =
∂ω

∂k
=

∂ω

∂kz,mn
ẑ +

∂ω

∂kθ,m
θ̂ =

c

nindex

k

k0
=
k2

k2
0

vp =

(
1 +

m2

k2
0r

2
− u2

mn

k2
0a

2

)
vp, (76)

13Although Schrödinger used Hamiltonian optics to motivate his equation for the quantum behavior of
particles [43], he appears not to have considered the inverse notion of the quantum relation E = �ω for the
energy of particles of light as a starting point for Hamiltonian optics.

14In [37] Landau explicitly identifies the angular frequency ω as the Hamiltonian for geometrical optics,
but the only medium he considers is vacuum. In [38] he considers anisotropic media that support mechanical
waves and notes that if the medium is homogeneous then the rays are straight lines; but he does not explictly
identify the dispersion relation ω(k) with the Hamiltonian. In [44] he considers the optics/electrodynamics
of anisotropic media but omits mention that the rays are straight lines in homogeneous anisotropic media,
and of the connection between ray optics and Hamiltonian mechanics.
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whose magnitude grows arbitrarily large for small r.
This result is similar to the awkward behavior of the ratio

〈
STM(r)

〉
/
〈
uTM(r)

〉
that was

a candidate for the energy-flow velocity as discussed earlier in this section. We could avoid
this behavior by using the second-to-last form of eq. (70), in which case we have,

ṽg ≡ ∂ω

∂kz,mn
ẑ =

c

nindex

kz,mn

k0
ẑ = ṽE , (77)

which is the same as the energy-flow velocity found in eq. (59) (after a similar disregard of
awkwardness associated with the azimuthal term in the Poynting vector). Lines of ṽg are
straight.

Equation (77) is an example of the general identity between group velocity and energy-
flow velocity in homogeneous (linear) media, as reviewed in sec. 2.1 of [40].
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