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1 Problem

Discuss the flow of energy and of momentum in, as well as the electromagnetic forces on, a
coaxial cable that carries a TEM wave. You may assume the cable to be made from nearly
perfect conductors (with a linear medium of dielectric constant ε and permeability μ between
them), so that the charges and currents are confined to thin layers at the surfaces of the
conductors.

This problem is an extension of the case where the coaxial cable carries a steady current
[1], for which the discussion concerned the relation between electromagnetic field momentum
and “hidden” mechanical momentum in the system.

2 Solution

2.1 Dual Roles of the Poynting Vector and the Maxwell Stress
Tensor

This problem illustrates the dual roles of the Poynting vector,

S = E ×H, (1)

(in MKSA units) and the Maxwell stress tensor T,

Tij = EiDj + BiHj − 1

2
δij(E · D + B · H) = εEiEj + μHiHj − 1

2
δij(εE

2 + μH2), (2)

in a linear medium with dielectric constant ε and permeability μ such that D = εE and
B = μH.

2.1.1 Energy Balance

As introduced by Poynting [2], the vector S describes the flow of energy across unit surface
area in unit time. In more detail, Poynting noted that the electromagnetic fields do work W
on the distributions � and J = �v of charge and current density at the rate per unit volume
of,1

dW

dt
= fEM · v = (�E + J × B) · v = �v · (E + v × B) = �v · E = J · E, (3)

where,
fEM = �E + J × B, (4)

1Equation (3) contains the insight that magnetic fields do no work individual charges with no intrinsic
magnetic moment.
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is the volume density of the fields on the charges and currents. The energy transferred
to these charges and currents according to eq. (3) comes from the energy stored in the
electromagnetic fields, whose energy density ufield according to Maxwell is,

ufield =
E · D + B · H

2
=

εE2 + μH2

2
. (5)

The field energy with a volume can also be changed by the flow S of energy across the surface
of that volume, so that conservation of energy can be expressed as,∫

∂ufield

∂t
dVol = −

∮
S · dArea −

∫
J · E dVol = −

∫
∇ · S dVol −

∫
J · E dVol, (6)

which can be expressed equivalently as the continuity equation,

∂ufield

∂t
+ ∇ · S = −J · E. (7)

Using Maxwell’s equations and various vector calculus identities, Poynting showed that the
energy flow vector S is given by eq. (1).2

2.1.2 Momentum Balance

Following the spirit of Poynting’s argument, Abraham [9] extended Maxwell’s analysis in
terms of a stress tensor of electromagnetic forces due to static fields to include the case
of time-dependent fields. Recall that for the case of static fields, Maxwell expressed the
electromagnetic force FEM on a volume in terms of an integral of the stress tensor T over
the surface of that volume,

FEM =

∫
fEM dVol =

∮
T · dArea. (8)

Using Maxwell’s (time-dependent) equations and various vector/tensor calculus identities,
Abraham showed that eq. (8) can be generalized to the form,3

FEM =

∫
fEM dVol =

∮
T · dArea −

∫
∂(εμS)

∂t
dVol. (9)

If the only forces on the charges and currents in the volume are electromagnetic, then New-
ton’s 2nd law can be written as,

FEM =

∫
fEM dVol =

∫
∂pmech

∂t
dVol =

dPmech

dt
, (10)

where pmech is the volume density of mechanical momentum, and Pmech is the total mechan-
ical momentum in the volume. Combining eqs. (9) and (10) we have,∫ (

∂pmech

∂t
+

∂(εμS)

∂t

)
dVol =

∮
T · dArea =

∫
∇ · T dVol. (11)

2Poynting’s derivation is discussed in most textbooks on electromagnetism. See, for example, sec. 8.1 of
[3], sec. 2.19 of [4], sec. 10-5 of [5], sec. 3.1 and chap. 7 of [6], sec. 6.7 of [7] and sec. 8.1 of [8].

3For discussions of Abraham’s derivation see, for example, sec. 12.1 of [3], secs. 2.6 and 2.29 of [4],
sec. 10-6 of [5], sec. 3.2 and chap. 7 of [6], sec. 6.7 of [7] and sec. 8.2 of [8].
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Following Abraham, we identify the vector,

pfield = εμS = D × B, (12)

as the momentum per unit volume that is stored in the electromagnetic field, so that the
total momentum density is,

ptotal = pmech + pfield, (13)

which obeys the continuity equation,

∂ptotal

∂t
− ∇ · T = 0. (14)

This leads to a second interpretation of the Maxwell stress tensor T, namely that −T is
the flux of momentum in the electromagnetic field. Momentum flux is a tensor, being the
vector momentum crossing an (oriented) area element per unit time. Momentum flux has
the dimensions of momentum density times velocity (and therefore the same dimensions as
energy density and as pressure).

For a TEM plane wave, such as in the present problem, the fields E and H and the
wave vector k form an orthogonal triad, the wave velocity is v = k̂/

√
εμ, the fields obey

εE2 = μH2, the energy density is u = εE2, the momentum density is pfield = (u/v) k̂ and
the Maxwell stress tensor has the simple form,

T = −u

⎛
⎜⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟⎠ = −pfieldv

⎛
⎜⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟⎠ , (15)

if we chose axis 1 along E, axis 2 along H and axis 3 along k. Interpreting −T as the momen-
tum flux, we confirm that this flux flows only in the k direction (across planes perpendicular
to k) and has magnitude equal to the momentum density times the wave velocity.

In static or quasistatic examples the Poynting vector, and hence the momentum density,
can be zero, while the tensor T is nonzero so long as either the electric or magnetic field is
nonzero. In such cases there is formally a momentum flux but no momentum density. Here
it is better to consider the tensor T to be simply a measure of the stresses caused by the
charges and currents.

In sum, the Poynting vector S = E × H has the interpretation as the flux of energy in
electromagnetic field, and when multiplied by εμ as the density of momentum pfield = εμS =
D × B. The Maxwell stress tensor T describes the stresses in a system due to its charges
and currents, as well as being the negative of the flux of momentum within the system.4

4Although we do not need to consider electromagnetic angular momentum here, we note that the vector
r × pfield describes the density of angular momentum stored in the electromagnetic fields, and the tensor
−εikl rkTjl describes the flux of angular momentum. See, for example, prob. 5, chap. 3 of [6].

3



2.2 TEM Wave in a Coaxial Cable with Perfect Conductors

We use a cylindrical coordinate system (r, φ, z) with the z axis along the axis of the coaxial
cable. The annular gap between the conductor extends from r = a to b, and this gap is filled
with a nonconductor with dielectric constant ε and permeability μ.

In the idealized case of perfect conductors, the electromagnetic fields are nonzero only
for a < r < b.

The velocity of the TEM wave is v = 1/
√

εμ, and the wave propagates in the +z direction.

2.2.1 E and H Fields for the TEM Wave

The electric field is radial, and can be written as,

E = Eb
b

r
cos(kz − ωt) r̂ (a < r < b), (16)

where Eb is the field strength at the outer conductor, k = 2π/λ and ω = kv. The magnetic
field B has magnitude equal to E/v =

√
εμE, and its direction is azimuthal. The magnetic

field H = B/μ can then be written as,

H =

√
ε

μ
c ẑ ×E =

√
ε

μ
Eb

b

r
cos(kz − ωt) φ̂ =

Eb

Z0

b

r
cos(kz − ωt) φ̂ (a < r < b), (17)

where Z0 =
√

μ/ε ≈ 100 Ω is the characteristic impedance of the coaxial transmission line.
We recall that the TEM wave fields (16)-(17) consist of the wave function cos(kz − ωt)

times fields Estatic and Hstatic that are possible steady-state fields with no z dependence.

2.2.2 Energy Density

The density (5) of energy stored in the electromagnetic field is,

u =
εE2 + μH2

2
= εE2 = εE2

b

b2

r2
cos2(kz − ωt). (18)

Note that εE2 = μH2, so the electric and magnetic components of the energy density are
equal in the TEM wave.

2.2.3 Poynting Vector

The Poynting vector (1) is,

S = E × H =

√
ε

μ
E2

b

b2

r2
cos2(kz − ωt) ẑ =

u√
εμ

ẑ = uv ẑ (a < r < b). (19)

The Poynting vector equals the electromagnetic energy density times the (vector) wave
velocity, which confirms the interpretation of S as the flux of electromagnetic energy carried
by the wave.
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2.2.4 Density and Flux of Momentum

The density (12) of momentum stored in the electromagnetic field is,

pfield = εμS = εμ
u√
εμ

ẑ =
u

v
ẑ (a < r < b), (20)

recalling eq. (19). This momentum density flows along with the wave, so the flux of momen-
tum is the momentum density times the wave velocity,

momentum flux = pfieldv = u ẑ (a < r < b). (21)

2.2.5 Maxwell Stress Tensor

The Maxwell stress tensor (2) has components in the cylindrical coordinate system,

T =

⎛
⎜⎜⎜⎝

Trr Trφ Trz

Tφr Tφφ Tφz

Tzr Tzφ Tzz

⎞
⎟⎟⎟⎠ =

1

2

⎛
⎜⎜⎜⎝

εE2 0 0

0 −εE2 0

0 0 −εE2

⎞
⎟⎟⎟⎠ +

1

2

⎛
⎜⎜⎜⎝

−μH2 0 0

0 μH2 0

0 0 −μH2

⎞
⎟⎟⎟⎠

= −εE2

⎛
⎜⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟⎠ = −u

⎛
⎜⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟⎠ (a < r < b). (22)

In the interpretation of −T as the momentum flux tensor, eq. (22) implies that the only non-
trivial component of momentum flux is −Tzz = u = (u/v)v, which corresponds to momentum
density of magnitude u/v flowing with velocity v in the z direction across surfaces perpen-
dicular to the z axis. This is consistent with the previous result (21) for the momentum
flux.

2.2.6 Forces on the Coaxial Cable

The stress tensor also has the interpretation as being the electromagnetic force per unit area
across an oriented surface. The form of eq. (22) implies that the only nonzero electromagnetic
force in the coaxial cable is in the z direction, and this acts across surfaces perpendicular to
the z direction.

In greater detail, both the electric and the magnetic parts of the stress tensor (22) have
nonzero radial, azimuthal and longitudinal components The radial electric component, T E

rr =
εE2/2, is positive, and implies an attractive force between the opposite charge distributions
on the inner and outer conductors of the cable, corresponding to Faraday’s insight that there
is a tension along the (radial) electric fields lines. The azimuthal and longitudinal electric
components, T E

φφ = T E
zz = −εE2/2, imply that there are repulsive forces between portions

of the conductors obtain by, say, slicing them along the planes x = 0, y = 0 or z = 0.
These repulsive forces are qualitatively anticipated by Faraday’s view that field lines repel
one another.
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The azimuthal magnetic component T H
φφ = μH2/2 is positive, and implies that there is

an attractive force between filaments of current on the same conductor. The radial and
longitudinal magnetic components T H

rr = T H
zz = −μH2/2 are negative and imply that there

are repulsive radial magnetic forces between the inner and outer conductor, and also between
longitudinal segments of the cable at, say, positive and negative z.

These electric and magnetic forces exist in the static case where the coaxial cable supports
a DC voltage or DC current (or both). In the case of a TEM wave, for which εE2 = μH2,
the radial and azimuthal electric and magnetic forces cancel one another, and only the
longitudinal forces remain.

This conclusion follows quickly from the form of the Maxwell stress tensor. We now
digress to calculate the forces by “elementary” methods.

2.2.7 Cancelation of the Radial Force

The surface density ς of free charge on the inside of the outer conductor can be found from
the Maxwell equation ρfree = ∇ · D = ε∇ · E, which implies that,

ς = εEb. (23)

The force per unit area on this charge distribution is radially inwards, with magnitude,

F E
r =

ςEb

2
=

εE2
b

2
, (24)

following the usual argument that the electric field falls to zero from Eb over the small but
finite radial thickness of the surface charge distribution, so that the average field on this
charge distribution is Eb/2.

The azimuthal magnetic field Bb =
√

εμEb at the outer conductor acts on the current
I in that conductor to produce an outward radial force. From Ampére’s law we have that
I = 2πbHb = 2πbBb/μ. The force on a portion of the outer conductor of azimthal extent φ
and length L is (φL/2π)IBb/2, noting that the magnetic field on the current varies from Bb

to zero with average strength Bb/2. The area of the portion of the conductor is φbL, so the
outward magnetic force per unit area is,

F B
r =

φL

2π

2πbBb

μ

Bb

2φbL
=

B2
b

2μ
=

μH2
b

2
=

εE2
b

2
= F E

r . (25)

Thus, the repulsive magnetic force cancels the attractive electric force in the radial direction.

2.2.8 Cancelation of the Transverse Forces

The azimuthal component Tφφ of the stress tensor can be used to calculate the transverse
force per unit length along the z axis between the portions of the coaxial cable on either side
of the plane x = 0. In particular, the transverse force dFx per length dz in the x direction
on the portion of the cable at x < 0 is given by,

dFx =

∫
Txx dAx = dz

∫ b

a

Txx dy + dz

∫ −a

−b

Txx dy = 2dz

∫ b

a

Tφφ dr, (26)
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since the area element on the plane x = 0 is dAx = dy dz = dr dz, and on the plane x = 0
we have that Txx = Tφφ.

The electric part of the transverse force per unit length is,

dF E
x

dz
= 2

∫ b

a

T E
φφ dr = −2ε

∫ b

a

E2 dr = −2ε

∫ b

a

E2
b

b2

r2
dr = −2εE2

b

b(b − a)

a
. (27)

The negative sign means that the force is in the −x direction, as expected due to the repulsion
between the like charges on the two halves of the conductors.

Similarly, the magnetic part of the transverse force is,

dF H
x

dz
= 2

∫ b

a

T H
φφ dr = 2μ

∫ b

a

H2 dr = 2μ

∫ b

a

H2
b

b2

r2
dr = 2μH2

b

b(b− a)

a

= 2εE2
b

b(b − a)

a
= −dF E

x

dz
. (28)

The total transverse force vanishes because T H
φφ = −T E

φφ.
We now attempt to verify the transverse forces (27) and (28) by elementary methods.

First, note that the (transverse) electric force per unit length dFE/dz on a wire of linear
charge density λ that is parallel to the z axis and passes through point r = (r, φ, 0) due to
a parallel wire of charge density λ′ that passes through point r′ = (r′, φ′, 0) is,

dFE

dz
=

λλ′

2πε

r− r′

|r − r′|2 . (29)

We subdivide the inner and outer conductors into wires of azimuthal extent dφ, such that
their linear charge densities are dλ0 = bεEb dφ on the wire segments of the outer conductor,
and dλI = −aεEa dφ = −bεEbb dφ = −dλO on the inner conductor. The portion of the cable
at x < 0 corresponds to π/2 < φ < 3π/2, and that at x > 0 to −π/2 < φ < π/2. The
x-component of the electric force on the portion of the cable at x < 0 is then,

F E
x =

∫
x<0

dλO

∫
x>0

dλ′
O

cos φ − cos φ′

4πεb[1 − cos(φ − φ′)]
+

∫
x<0

dλI

∫
x>0

dλ′
I

cos φ − cosφ′

4πεa[1 − cos(φ − φ′)]

+

∫
x<0

dλO

∫
x>0

dλ′
I

b cosφ − a cos φ′

2πε[a2 + b2 − 2ab cos(φ − φ′)]

+

∫
x<0

dλI

∫
x>0

dλ′
O

a cosφ − b cos φ′

2πε[a2 + b2 − 2ab cos(φ − φ′)]

= (b + a)
b

a

εE2
b

4π

∫ 3π/2

π/2

dφ

∫ π/2

−π/2

dφ′ cosφ − cos φ′

1 − cos(φ− φ′)

−(b + a)b2 εE2
b

2π

∫ 3π/2

π/2

dφ

∫ π/2

−π/2

dφ′ cos φ − cosφ′

a2 + b2 − 2ab cos(φ − φ′)
. (30)

The result of eq. (30) could well be the same as eq. (27). Certainly it is simpler to use the
Maxwell stress tensor to obtain the force than it is to use “elementary” methods.

The magnetic force per unit length on the portion of the cable at x < 0 can in principle
be calculated by an application of the Biot-Savart force law. We subdivide the currents on
the conductors into filaments subtending angle dφ, leading to integrals very similar to those
in eq. (30).
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2.2.9 Significance of the Longitudinal Force on the Cable

The nonzero value of component Tzz = −(εE2 + μH2)/2 of the Maxwell stress tensor (22)
implies that there are longitudinal forces on the coaxial cable. These forces exist in the static
limit as well.

The electric part of the longitudinal force between portions of the cable at, say, z < 0
and z > 0 is readily ascribed to the repulsion between the like charges in these two regions.
However, it is harder to identify the source of the longitudinal magnetic force, since the
currents flow only longitudinally (in the static limit, and also for TEM waves on a cable
made of ideal conductors).

Note that the total longitudinal force on any finite portion of the cable, say z1 < z < z2,
vanishes in the static limit, because the longitudinal force on the two ends of this portion is
equal and opposite. A nonzero total longitudinal force is obtained for the interval z1 < z < z2

if one end of the cable lies within this interval, so that Tzz = 0 at either z1 or z2. In this
case, there must be radial currents at the termination of the cable, and these radial currents
interact with the azimuthal magnetic field to produce the postulated longitudinal force.

DC Current
For example, consider a coaxial cable that extends only for z < z0 and which carries DC

current I in the +z direction on its inner conductor and current −I on its outer conductor.
The termination at z = z0 is via a uniform resistive disk of thickness d (that extends from
z = z0 to z0+d), so that the radial current density J in the terminating resistor for a < r < b
is,

J =
I

2πrd
r̂. (31)

The azimuthal magnetic field at z = z0 is,

B =
μI

2πr
φ̂, = μHb

b

r
φ̂, (32)

and falls to zero at z = z0d. That is, the average magnetic field is 1/2 that of eq. (32),

〈B(a < r < b, z0 < z < z0 + d)〉 = μHb
b

2r
φ̂. (33)

The magnetic force on the terminating resistor is,

F =

∫
J × B dVol =

∫ b

a

dr

∫ 2π

0

r dφ

∫ z0+d

z0

dz
Hbb

rd
μHb

b

2r
ẑ = μH2

b πb2 ln
b

a
ẑ. (34)

We compare this with a calculation using the Maxwell stress tensor for a cylinder of
radius R > b and longitudinal extent z1 < z < z2, where z1 < z0 and z2 > z0 + d so that
the terminating resistor lies within this interval. Then, the component Tzz is −μH2/2 =
−μH2

b b2/2r2 at z1 but vanishes at z2. All components of the tensor T vanish on the cylindrical
surface at r = R since this is outside the cable. The (outward pointing) surface area element
at z = z1 is dAreaz(z1) = −2πr dr, so the total force on the cable within this interval is,

F =

∮
T · dArea =

∫
Tzz(z1) dAreaz(z1) ẑ =

∫ b

a

(
−μH2

b b2

2r2

)
(−2πr dr) ẑ = μH2

b πb2 ln
b

a
ẑ,

(35)
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as found in eq. (34).

TEM Wave
We return to the case of a TEM wave on the coaxial cable, and calculate the electro-

magnetic forces on a portion of the cable that does not include the terminating resistor. For
this, we apply eq. (9) to a cylinder of radius R > b and longitudinal extent 0 < z < z1,
for which the relevant (outward pointing) area elements are dAreaz(0) = −2πr dr and
dAreaz(z1) = 2πr dr. Then, recalling eqs. (20)-(22), the force on this portion of the ca-
ble is,

F =

∮
T · dArea − d

dt

∫
pfield dVol

=

∫
Tzz(0) dAreaz(0) ẑ +

∫
Tzz(z1) dAreaz(z1) ẑ −

∫ b

a

2πr dr

∫ z1

0

∂(εμS)

∂t
dz

=

∫ b

a

εE2
b b

2

r2
[cos2 ωt − cos2(kz1 − ωt)] 2πr dr ẑ

−
∫ b

a

εμ

√
ε

μ
E2

b

b2

r2
2πr dr

∫ z1

0

2ω cos(kz − ωt) sin(kz − ωt) dz ẑ

= 2εE2
b πb2 ln

b

a
[cos2 ωt− cos2(kz1 − ωt)] ẑ

+2ε
√

εμ
ω

k
E2

b πb2 ln
b

a
[cos2(kz1 − ωt) − cos2 ωt] ẑ

= 0, (36)

noting that ω/k = v = 1/
√

εμ. Thus, although the forces associated with the Maxwell stress
tensor on a portion of the coaxial cable are nonzero, they act to change the electromagnetic
field momentum in that portion of the coaxial cable, rather than producing a mechanical
force on the conductors of the cable.

The force on a portion of the cable that includes a terminating resistor at z = z0 can be
obtained from the analysis contained in eq. (36) by replacing z1 with z0 and omitting the
contribution from the stress tensor at z = z1,

F = εE2
b πb2 ln

b

a
cos2(kz0 − ωt) ẑ = 2μH2

b πb2 ln
b

a
cos2(kz0 − ωt) ẑ. (37)

Another view is that since the terminating resistor absorbs the momentum flowing along the
cable, it experiences a force equal to the momentum flux into the resistor, namely,

F =

∫ b

a

−Tzz(z0) 2πr dr = εE2
b πb2 ln

b

a
cos2(kz0 − ωt) ẑ. (38)
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