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1 Problem

A “coaxial” transmission line has inner conductor of radius a and outer conductor of radius
b, but the axes of these two cylinders are offset by a small distance δ � b. Deduce the
capacitance and inductance per unit length, and the impedance Z, accurate to order δ2/b2.

The (relative) dielectric constant and permeability of the medium between the two con-
ductors both unity. The relevant frequencies and conductivities are so large that the skin
depth is small compared to δ.
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2 Solution

We use Gaussian units, and convert the impedance Z =
√

L/C to MKSA units by noting
that 1/c = 30Ω, where c is the speed of light.

We don’t need to calculate both the capacitance C per unit length and the inductance
L per unit length, since in the case of a (perfectly conducting) transmission line they are
related by,

LC =
εμ

c2
, (1)

where the dielectric constant ε and the permeability μ are unity in the present case. The
assumed smallness of the skin depth permits us to approximate the present transmission line
as perfectly conducting.

We first present two calculations of the capacitance (secs. 3 and 4), and then a calculation
of the inductance (sec. 5) as illustrations of various possible techniques.

3 The Capacitance Via the Image Method

It is expedient to use the image method for 2-dimensional cylindrical geometries. Recall
that in the case of a wire of charge q per unit length at distance b from a ground conducting
cylinder of radius a, as shown in the figure, one can think of an image wire of charge −q at
radius a2/b.

To apply this to the present problem, sketched in the figure below, note that the image
wires of charge ±q per unit length are both located to the left of the center of the inner
conductor, say at distances ra and rb.
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For the inner cylinder to be an equipotential, we must have,

rb =
a2

rb
, (2)

and the outer cylinder is also an equipotential provided,

rb + δ =
b2

ra + δ
, (3)

noting the offset by δ between the inner and outer cylinder. Combining eqs. (2) and (3), and
noting that ra → 0 as δ → 0, we find,

ra =
b2 − a2 − δ2 −

√
(b2 − a2 − δ2)2 − 4a2δ2

2δ
. (4)

The capacitance is related by C = q/ΔV , where ΔV = Vb −Va is the potential difference
between the two cylinders. Recall that the potential at distance r from a wire of charge q
per unit length is 2q ln r + constant. We evaluate the potentials at the points where the
cylinders are closest to, one another:

Va = 2q ln(a − ra) − 2q ln(rb − a) = 2q ln
a − ra

a2/ra − a
= 2q ln

ra

a
, (5)

using eq. (2), and,

Vb = 2q ln(b− δ − ra) − 2q ln(rb − b + δ) = 2q ln
b − ra − δ

b2/(ra + δ) − b
= 2q ln

ra + δ

b
, (6)

using eq. (3). Then,

ΔV = 2q ln

[
a

b

(
1 +

δ

ra

)]
. (7)

When combined with eq. (4), this is an “exact” solution for any δ < b− a. In particular,
as δ → b − a, then ra → a, and the cylinders touch with the result that ΔV = 0.

Here, we suppose that δ � b− a, and expand δ/ra to second order,

δ

ra
=

b2 − a2 − δ2 +
√

(b2 − a2 − δ2)2 − 4a2δ2

2a2
≈ b2 − a2

a2
− b2δ2

a2(b2 − a2)
, (8)

so that,

1 +
δ

ra
≈ b2

a2

(
1 − δ2

b2 − a2

)
. (9)

The capacitance per unit length is therefore,

C =
q

ΔV
≈ 1

2
(
ln b

a
− δ2

b2−a2

) , (10)
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using eq. (7).
The inductance per unit length now follows from eq. (1),

L =
2

c2

(
ln

b

a
− δ2

b2 − a2

)
, (11)

and the impedance is,

Z =

√
L

C
≈ 2

c

(
ln

b

a
− δ2

b2 − a2

)
= 60

(
ln

b

a
− δ2

b2 − a2

)
Ω. (12)

Remark: The “exact” expression (7) is often written in a different fashion, which is
convenient for large δ, but perhaps less useful for small δ. The “exact” version of (8) leads
to,

1 +
δ

ra
=

b2 + a2 − δ2 +
√

(b2 + a2 − δ2)2 − 4a2b2

2a2
, (13)

which in turn leads to,

C =
q

ΔV
=

1

2 ln
b2+a2−δ2+

√
(b2+a2−δ2)2−4a2b2

2ab

=
1

2 cosh−1 a2+b2−δ2

2ab

. (14)

4 Capacitance Via Series Expansion of the Potential

The image method can be deduced by an application of series expansion techniques for the
electrostatic potential. In this section, we explore a direct use of such techniques. A full
solution is long, and when we leave off some steps at the end, we get an answer that is not
quite correct.

We define the electrostatic potential φ to be zero on the inner conductor,

φ(r = a) = 0, (15)

and V on the outer conductor whose surface is approximately given by r = b + δ cos θ,

φ(r = b + δ cos θ) = V. (16)

The potential is symmetric about θ = 0,

φ(−θ) = φ(θ), (17)

so terms in sin nθ cannot appear in the series expansion of the potential,

φ(r, θ) = A0 ln r +
∑
n=1

(
Anr

n +
Bn

rn

)
cos nθ. (18)

The capacitance C per unit length is, of course, given by C = Q/V , where the charge Q
per unit length on the inner conductor is given by,

Q = 2πa

∫ 2π

0

σ(θ) dθ = 2πa

∫ 2π

0

Er(a, θ)

4π
dθ =

a

2

∫ 2π

0

∂φ(a, θ)

∂r
dθ =

A0

2
. (19)
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Thus,

C =
A0

2V
. (20)

Applying the boundary condition (15) to the general form (18), we have,

0 = A0 ln a +
∑
n=1

(
Ana

n +
Bn

an

)
cos nθ. (21)

Likewise, the boundary condition (16) yields,

V = A0 ln(b + δ cos θ) +
∑
n=1

(
An(b + δ cos θ)n +

Bn

(b + δ cos θ)n

)
cosnθ. (22)

With considerable effort, the terms in eq. (22) of the form cosl θ cos mθ can be expressed
as sums of terms in the orthogonal set of functions cos nθ. Then, eqs. (21) and (22) can be
combined to yield the Fourier coefficients An and Bn. Thus, subtracting eq. (21) from (22)
and using the approximation (34), we have,

V = A0

(
ln

b

a
+

δ cos θ

b
− δ2 cos2 θ

2b2

)
+ F (An, Bn, θ) (23)

IF the integral of F with respect to θ vanished, then integrating eq. (23) yields,

V = A0

(
ln

b

a
− δ2

4b2

)
, (24)

and the capacitance would be,

C =
A0

2V
≈ 1

2
(
ln b

a
− δ2

4b2

) . (25)

However, we the presence of terms like A1 cos2 θ in F means that we cannot expect its integral
to vanish, and eq. (25) is not quite correct.

5 Calculation of the Inductance

The calculation of the inductance is complicated by the fact that the currents in this problem
are distributed over surfaces, rather than flowing in filamentary wires. We would like to use
the relation,

Φ = cLI, (26)

where I is the total (steady) current flowing down the inner conductor (and back up the outer
conductor), and Φ is the magnetic flux per unit length linked by the circuit. From Ampère’s
law, with the assumption that the currents are uniformly distributed on the inner and outer
conductors, the azimuthal component Bθ of the magnetic field in the region between the two
conductors is given by,

Bθ(r) =
2I

cr
. (27)
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If the cable were truly coaxial, the flux would be simply,

Φ0 =

∫ b

a

Bθdr =
2I

c
ln

b

a
, (28)

and the corresponding inductance would be,

L0 =
2

c2
ln

b

a
. (29)

Then, from eq. (1) the capacitance would be,

C0 =
1

2 ln(b/a)
, (30)

as is readily verified by an electrostatic analysis, and the transmission-line impedance would
be,

Z0 =

√
L0

C0
=

2

c
ln

b

a
= 60 ln

b

a
Ω. (31)

However, because the outer conductor is off center with respect to the inner, we can-
not simply use eq. (28). We can segment the currents on the conductors into filaments
of azimuthal extent dθ, and calculate the flux Φ(θ) linked the circuit element defined by
the segments centered on angle θ on the inner and outer conductors. Then, the effective
inductance of the whole cable can be estimated from eq. (26) using the average of Φ(θ),

L =
1

2πcI

∫ 2π

0

Φ(θ) dθ =
1

2πcI

∫ 2π

0

dθ

∫ rmax(θ)

a

Bθ(r)dr =
1

πc2

∫ 2π

0

ln
rmax(θ)

a
dθ, (32)

using (27) and (28). The result holds only to the extent that the current distribution is
independent of azimuth, as discussed in sec. 6. However, there will be a small azimuthal
dependence to the current in this problem, so we will not obtain a completely correct result.
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To complete the analysis, we need rmax(θ), the maximum radius about the center of the
inner conductor of magnetic field lines that are linked by the segment of the outer conductor
at azimuthal angle θ. Assuming the currents is uniformly distributed over the inner and outer
conductors, the magnetic field between the two conductors is entirely due to the current in
the inner conductor, and the field is purely azimuthal about the axis of the inner conductor
as given by eq. (27). Then, the geometry shown in the figure tells us that,

rmax(θ) = b + δ cos θ. (33)

This relation is “exact” to the extent that the currents are uniformly distributed; however,
this is not actually the case in the present problem.

To use relation (33) in eq. (32), we approximate,

ln
rmax(θ)

a
= ln

b + δ cos θ

a
= ln

b

a
+ ln

(
1 +

δ cos θ

b

)
≈ ln

b

a
+

δ cos θ

b
− δ2 cos2 θ

2b2
, (34)

which leads to,

L ≈ 2

c2

(
ln

b

a
− δ2

4b2

)
. (35)

This result happens to agree with the result implied by sec. 4, but differs somewhat from
the more accurate result of sec. 3.

6 The Magnetic Flux Linked by a Distributed Circuit

The magnetic flux through a filamentary circuit (one in which the conductors are idealized
as wires) is well defined as,

Φ =

∫
B · dS, (36)

where the integral is taken over any surface bounded by the circuit. However, when the
conductors of the circuit are distributed and have a finite cross sectional area A, then eq. (36)
is not well defined.

We wish to show that a consistent definition of the flux through a distributed circuit is
obtained by segmenting the conductors into a large number of circuits each with very small
cross sectional area Ai, and defining,

Φ =
1

A

∑
i

AiΦi, (37)

where the magnetic flux through subcircuit i is given by eq. (36).
We are interested in a definition of flux that gives consistency to the relation (26) in

the context of circuit analysis. In particular, if the circuit has total resistance R, and the
magnetic flux is changing, then we desire Faraday’s law to be written as,

IR = E = −1

c

dΦ

dt
, (38)
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which is the same form as holds for each of the filamentary subcircuits,

IiRi = Ei = −1

c

dΦi

dt
. (39)

We suppose that the current flowing in subcircuit i is related to the total current according
to,

Ii =
Ai

A
I, (40)

in which case the resistance of subcircuit i is given by,

Ri =
A

Ai
R. (41)

Then, we can combine eqs. (39)-(41) as,

I =
∑

i

Ii = −1

c

∑
i

1

Ri

dΦi

dt
= − 1

cRA

∑
i

Ai
dΦi

dt
. (42)

Hence, the definition (37) leads to the desired relation (38) for the distributed circuit.
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