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1 Problem

The interaction energy of an electric charge q and a “point” electric dipole with moment p
of fixed magnitude, both at rest, is, in Gaussian units,
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q δ3(r − rq) dVol = p · qrq

r3
q

= −p · Eq (electric charge and permanent electric dipole), (1)

taking the electric dipole to be at the origin, such that the field at the dipole (i.e., at
the origin) due to charge q at location rq is Eq = −qrq/r

3
q with ∇ · Eq = 4πq δ3(r − rq),

while the field of the electric dipole can be related to the gradient of a scalar potential as
Ep = −∇(p · r/r3). The force on the electric dipole p is,

Fp = (p · ∇p)Eq = ∇p(p · Eq) = −∇pUint, (2)

where ∇p is the gradient at the location of the dipole p, and we note that ∇ × Eq = 0 for
charge q at rest. The force on the electric charge q is,

Fq = q Ep = −q ∇q
p · rq

r3
q

= ∇q(p · Eq) = −∇qUint = ∇pUint = −Fp, (3)

where ∇q is the gradient at the location of the charge q.
Similarly, interaction energy of a (Gilbertian) magnetic charge p (aka magnetic monopole)

and a “point” magnetic dipole mG consisting of a pair of opposite magnetic charges with
fixed separation, all at rest, is,

Uint =

∫
BmG

· Bp

4π
dVol

= −mG · Bp (Gilbertian magnetic charge and Gilbertian magnetic dipole),(4)

taking the magnetic dipole to be at the origin, such that the field at the dipole (i.e., at the
origin) due to magnetic charge p at location rp is Bp = −p rp/r

3
p with ∇ ·Bp = 4πp δ3(r−rp),

while the field of the magnetic dipole can be related to the gradient of a scalar potential as
BmG

= −∇(mG · r/r3). The force on the Gilbertian magnetic dipole mG is,

FmG
= (mG · ∇m)Bp = ∇m(mG · Bp) = −∇mUint, (5)
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where ∇m is the gradient at the location of the dipole m, and we note that ∇×Bp = 0 for
magnetic charge p at rest. The force on the magnetic charge p (in vacuum) is,

Fp = pBmG
= −p∇p

mG · rp

r3
p

= ∇p(mG · Bp) = −∇pUint = ∇mUint = −FmG
, (6)

where ∇p is the gradient at the location of the magnetic charge p.
However, if the “point” magnetic dipole mA is Ampèrian, such as that of an electron,

proton or neutron, for which ∇ ·BmA
= 0,1 its interaction energy with a Gilbertian magnetic

pole appears to vanish,
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= 0 (Gilbertian magnetic charge and Ampèrian magnetic dipole), (7)

taking the magnetic charge to be at the origin, and noting that the field of a magnetic dipole
falls off as 1/r3 at large distances.2 The force on the Ampèrian magnetic dipole mA is,3

FmA
= ∇m(mA · Bp), (8)

while the force on the magnetic charge p (in vacuum) is,

Fp = pBmA
= −p∇p

mA · rp

r3
p

= ∇p(mA · Bp) = −∇m(mA · Bp) = −FmA
, (9)

It is agreeable that Fp = −FmA
, but neither of these forces is associated with a conserved

field energy unless the interaction energy were Uint = −mA · Bp, rather than zero as found
in eq. (7).

The implication is that the interaction of a Gilbertian magnetic charge with a “point”
(permanent) Ampèrian magnetic dipole does not conserve energy.4

Can this be so?

This problem arose from considerations that classical electromagnetism might not be
consistent if both electric and magnetic charges exist, as perhaps first discussed by Rohrlich
[4], and also by Comay [5, 6, 7, 8, 11, 14], by Lipkin and Peshkin [9, 10], by Tejedor and
Rubio [12], and by Getino, Rojo and Rubio [13]. The present example was first discussed by
Comay in [5, 6], and further discussed in [9, 12, 13, 14].5

1For discussion of how we know that the magnetic moment of a neutron is Ampèrian, see [1].
2The argument of eq. (7) does not depend on the Ampèrian current loop being pointlike, but only that

the magnetic field BmA of the loop obeys ∇ ·BmA = 0 and that this field falls off as 1/r3 at large distances.
3See, for example, sec. 5.7 of [2].
4The case of an Ampérian magnetic moment of finite size, whose steady current is maintained by a

“battery”, is considered in Appendix A.
5That magnetic monopoles might be problematic in quantum field theory is discussed in [15].
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2 Solution

2.1 Delta Functions Associated with “Point” Dipoles

As discussed, for example, in sec. 4.1 of [2], the field of a “point” dipole m at the origin
consisting of a pair of opposite (Gilbertian) charges can be written as,

Bm,G =
3(m · r̂) r̂ − m

r3
− 4π

3
m δ3(r), (10)

where the delta function at the origin describes the large field between the two charges
that point from the positive to the negative charge, i.e., opposite to the direction of the
momentum m. In contrast, as discussed in sec. 5.6 of [2], if the magnetic dipole is due to
an (Ampèrian) loop of electric current, the field at the origin points in the same direction as
the moment m, with,

Bm,A =
3(m · r̂) r̂ − m

r3
+

8π

3
m δ3(r) = Bm,G + 4πm δ3(r). (11)

Hence,

∫
Bm,Amperian · Bp

4π
dVol =

∫
Bm,Gilbertian · Bp

4π
dVol +

∫
m δ3(r) · Bp dVol

= −m · Bp + m · Bp = 0. (12)

That is, keeping track of the delta function at the center of a “point” dipole does not resolve
the paradox, as claimed in [12], but reinforces it.

2.2 Interaction Energy of a Dirac String

Paradoxes similar to the above involving magnetic charges were discussed by Lipkin and
Peshkin [9, 10], who suggested that they should be considered in the context of Dirac’s theory
of magnetic charges as being at the end of “strings” of magnetic flux [16, 17].6 However,
Lipkin and Peshkin did not provide a clear resolution of these paradoxes.

We now transcribe an argument by Getino, Rojo and Rubio [13] that the interaction en-
ergy between an Ampèrian magnetic dipole and the Dirac string associated with a Gilbertian
magnetic charge equals −mA ·Bp,

7 which resolves Comay’s paradox to the extent that such
strings are physical. However, the field energy associated with a pair of Gilbertian magnetic
charges then becomes doubtful.8

6A classical presentation of Dirac strings is given in sec. 6.12 of [2].
7Such interaction energy each goes against Dirac’s view [17], “supposing each pole to be at the end of

an unobservable string”.
The argument also associates an infinite self energy with the string, which is distributed along the string.

That is, the self energy of a Dirac string is not localized to the magnetic monopole, and a procedure for
renormalizing away this infinite energy is unclear. Further, in a closed Universe, the string would essentially
fill the entire Universe, with possibly interesting implications. See also Appendix C below.

8See [14] for comments by Comay on the argument of Getino et al.
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2.2.1 Gilbertian Magnetic Charge + Ampèrian Magnetic Moment

Since quantum theories of particles are based on Hamiltonians in which the canonical mo-
mentum of a particle with electrical charge q is pcanonical = pmech+qA/c, where A is the vector
potential of the electromagnetic field acting on the charge, it is desirable that the magnetic
field of magnetic charge p be expressible in terms of a vector potential. However, since the
magnetic field Bp = p (r− rp)/ |r − rp|3 of a magnetic charge obeys ∇ ·Bp = 4πp δ3(r− rp),
we cannot write Bp = ∇× Ap.

Dirac’s suggestion [16] was that a magnetic charge p is at the end of an infinite string,
here labeled s, and the interior of this string carries magnetic flux 4πp with sign opposite
to that of the flux associated with the “ordinary” magnetic field Bp. That is, denoting ŝ as
the unit vector tangent to the string, pointing to the end where the magnetic charge resides,
the magnetic field of the string can be written as,

Bs = 4πpδs, (13)

where the vector delta function δs is parallel to ŝ, and obeys δs = 0 for points not on the
string. Furthermore, ∫

δs · n̂ dArea = sign(ŝ · n̂), (14)

for an integral over a surface pierced by the string at a point where n̂ is the unit vector
normal to the surface.

Then, the total magnetic flux across a surface surrounding the magnetic charge is zero,
∇ · B = 0 where B = Bp + Bs, and we can now associate a vector potential Ap with the
field B of a magnetic charge.

For example, the vector potential of a magnetic charge p at the origin, with Dirac string
along the negative-z axis, is,

Ap = p
1 − cos θ

r sin θ
φ̂, (15)

in spherical coordinates (r, θ, φ).
Turning to the issue of the interaction energy between a Gilbertian magnetic charge p,

taken to be at the origin, and an Ampèrian magnetic dipole mA at rm, we write the total
field of the magnetic charge as Bp + Bs, such that,

Uint =

∫
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· (Bp + Bs)

4π
dVol =

∫
BmA

·Bs

4π
dVol = p
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BmA

· δs dVol

= p

∫
s

∫
surfaces ⊥ to ŝ

(BmA
· δs)(ds · dArea)

= p

∫
s

∫
surfaces ⊥ to ŝ

(BmA
· ds)(δs · dArea) = p

∫
s

BmA
· ds

= −p

∫
s

∇ϕmA
· ds = pϕmA

(0) = p
mA · −rm

r3
m

= −mA · Bp, (16)

where we have expressed the volume integral of BmA
·δs as an integral along the Dirac string

times integrals over surfaces penetrated by the string; then since δs and ds are parallel,
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they can be exchanged in the integrands of the second and third lines; and we note that
the magnetic field of the Ampèrian magnetic dipole can be expressed in terms of a magnetic
scalar potential ϕmA

= m · (r − rm)/ |r − rm|3 for points outside the dipole current, with
BmA

= −∇ϕmA
. Hence, the interaction energy of the Ampèrian magnetic dipole with the

Dirac string associated with the magnetic charge p has the desired value −mA ·Bp needed to
restore conservation of energy, so long as the Dirac string does not pass through the current
loop of the Ampèrian dipole.9

2.2.2 Two Gilbertian Magnetic Charges

The magnetic field energy of two Gilbertian magnetic chagres, each with an associated Dirac
string, would be,

Uint =

∫
(Bp1 + Bs1) · (Bp2 + Bs2)

4π
dVol

=

∫
Bp1 · Bp2

4π
dVol +

∫
Bp1 · Bs2

4π
dVol +

∫
Bp2 · Bs1

4π
dVol +

∫
Bs1 · Bs2

4π
dVol

=
p1p2

r12
+ p2 ϕp1

(rp2) + p1 ϕp2
(rp1) = 3

p1p2

r12
, (17)

assuming that the two Dirac strings do not intersect, so Bs1 · Bs2 = 0, and noting that in
eq. (16) the field BmA

could be replaced by the field Bp of a Gilbertian magnetic charge
whose magnetic scalar potential is ϕp(r) = p/ |r − rp| (outside the Dirac string).

However, since the force between two Gilbertian magnetic charges is F = p1p2 r12/r
3
12,

we expect their interaction energy to be Uint = p1p2/r12.
Hence, the introduction of Dirac strings does not appear to resolve Comay’s paradox

in the larger sense of accounting for field energy in systems involving Gilbertian magnetic
charges (as well as electric currents).

It continues to seem that an electromagnetic field theory in which the field energy is∫
(E2 + B2) dVol/8π in not compatible with the existence of both electric and magnetic

charges, and that Comay’s paradox remains unresolved, at least in a classical context.

2.3 Quantum Analyses

Comay’s paradox suggests the despite their appeal, magnetic charges are not compatible
with classical electrodynamics.

Present enthusiasm of magnetic charges is in the quantum context, starting with the
landmark papers of Dirac [16, 17], and extended to gauge theories by ’tHooft [18] and
Polyakov [19].10 As remarked in sec. 3.1.7 of [23], There is no classical Hamiltonian theory
of magnetic charge.

9Lipkin and Peshkin [9, 10] noted that in case the magnetic charge moves through the current loop,
possibly on a trajectory that passes through the loop several times, the Dirac string must become wound
around the current loop.

10Yang [20]-[22] has emphasized the merits of the language of fiber bundles when discussing monopoles.
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Appendix A: Current Loop Maintained by a “Battery”

If the current of an Ampèrian dipole is maintained by a constant-current source (“battery”
of appropriately variable voltage V ), the latter can contribute to the energy stored in the
system, which is therefore not necessarily equal to the work done by the electromagnetic
forces.

Current Loop Brought in from Infinity

For example, suppose the system of Gilbertian magnetic charge and Ampèrian magnetic
dipole, both at rest, is created by first bringing the magnetic charge in from “infinity” to
its final position, and then bringing the magnetic dipole in from “infinity”. The field of the
magnetic charge does work,

Wp =

∫ rm

∞
FmA

· dxm =

∫ rm

∞
∇m(mA · Bp) · dxm = −mA · Bp, (18)

recalling eq. (7) and noting that the displacement dxm is opposite to the force FmA
on

the magnetic dipole as it moves in from “infinity”. In addition, the battery does work to
maintain constant current I in the Ampèrian loop of (constant) Area,

Wbattery =

∫
VbatteryI dt = I

∫
dt

d

dt

ϕ

c
=

IΔϕ

c
= Bp · IArea

c
= Bp · mA, (19)

noting that to keep the current constant the battery must provide a voltage equal and
opposite to the EMF induced in the current loop due to the changing magnetic flux ϕ =∫

Bp · dArea according to Faraday’s law, EMF ind = −(d/dt)ϕ/c.11

Thus, zero total work is required to assemble the Gilbertian magnetic charge and the
Ampèrian magnetic dipole in the above scenario, so it is agreeable that the magnetic field
interaction energy (7) is zero in this case.12

Current Raised from Zero

Another scenario for assembly of the Gilbertian magnetic charge and Ampèrian magnetic
dipole is that initially the current is zero. Then, the charge and loop are brought to their
final positions, and the current in loop is raised until its magnetic moment is the desired
mA. Since the Lorentz force on the current is perpendicular to the latter, no work is done
by the field of the magnetic charge as the current is raised. The only work done is that by
the “battery” to overcome the back EMF due to the self inductance of the current loop
as the current rises. This results in energy stored in the field of the current loop, which
is considered as a “self energy”, and not part of the possible interaction energy with the
magnetic charge.

11In case the field of the magnetic charge flips the direction of the moment mA from antiparallel to parallel
Bp, the work done by the field is 2mABp, and this energy comes from the “battery”, as according to eq. (19),
Wbattery = IΔϕ/c = 2IBpArea/c = 2BpmA. The interaction field energy remains zero during this process.

12This argument is given in sec. 5.7 of [2] and on p. 986 of [24].
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Hence, also in this scenario, zero work is done while assembling the system that con-
tributes to an interaction field energy.

Thus, Comay’s paradox does not apply to Ampèrian magnetic moments that are loops
of current maintained by “batteries”. The paradox exists only if Nature includes include
Gilbertian magnetic charges as well as “permanent” Ampèrian magnetic moments, such as
those of electrons, protons and neutrons.13 Such permanent moments are not well explained
in “classical” electrodynamics, and are a feature of quantum electrodynamics.

Hence, Comay’s paradox is an aspect of the protrusion of quantum physics into the
“classical” realm.

Appendix B: Field Momentum and Angular Momentum

In 1904, J.J. Thomson [25, 26] showed that the field momentum of a magnetic charge and
electric charge, both at rest, is zero,

PEM =

∫
pEM dVol =

∫
E ×B

4πc
dVol = 0, (20)

supposing that the field of the magnetic charge is given by Bp = p (r − rp)/ |r − rp|3. He
also showed that the field angular momentum of this system is,

LEM =

∫
r × pEM dVol =

∫
r × E × B

4πc
dVol =

q p

c
R̂, (21)

where unit vector R̂ points from the electric charge to the magnetic charge.14

For systems at rest with fields that fall off sufficiently quickly at large distances, and for
which the magnetic field can be deduced from a vector potential, the field momentum and
angular momentum can be computed in other ways [30], including,

PEM =

∫
ρA(C)

c
dVol, LEM =

∫
r× ρA(C)

c
dVol, (22)

where ρ is the electric charge density and A(C) is the vector potential in the Coulomb gauge.
However, the forms (22) appear to be problematic for the vector potential Ap associated

with the Dirac string of a magnetic charge p, as this would imply,

PEM =
qA

(C)
p (rq)

c
, LEM = rq × qA

(C)
p (rq)

c
. (23)

such that PEM would be nonzero in general, while LEM would not point along R̂ = r̂q when
the magnetic charge is at the origin.

13If one associates Dirac strings with magnetic charges to resolve Comay’s paradox for permanent
Ampèrian magnetic dipoles, then the interaction energy (16) between the dipole and the string violates
the conservation of energy that holds in the absence of such strings.

14The result (21) was anticipated by Darboux in 1878 [27] and by Poincaré in 1896 [28], but without
interpretation of the vector qp R̂/c as the field angular momentum [29].
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If the field momentum of a system at rest is nonzero, that system must also contain an
equal and opposite “hidden” momentum, such that the total momentum of the system is
zero.15 A system of structureless electric and magnetic charges (at rest) cannot have any
“hidden” (internal) momentum, so it is agreeable that the field momentum of this system is
zero according to eq. (10). However, if we consider that the magnetic charge is associated
with a Dirac string, there is some kind of “hidden” structure to the system, which could
then have nonzero field momentum (with equal and opposite “hidden” momentum residing
in the string).

Appendix C: Pair Creation of Magnetic Monopoles

Presumably, magnetic monopoles with Dirac strings would not exist in the very early Uni-
verse, but would be created as monopole-antimonopole pairs at some later time. The as-
sociated strings could not be created with infinite initial length. Rather, a more consistent
physical picture would be that a single string connects the monopole and antimonopole,
which string grows in length as the two particles separate. Then, the length of the string
would never become infinite. However, this scenario would make sense only if there were no
self energy associated with the string.

If the string were later broken into two pieces, the newly created ends of the substrings
would have to terminate in a monopole or antimonopole. The numbers of monopoles and
antimonopoles would always have to be equal, in contrast to ordinary matter for which
somehow there exists a dramatic asymmetry in numbers of particles and antiparticles.

It seems unlikely that relatively stable bulk matter made of monopoles or antimonopoles
could exist, as the equal numbers of monopoles and antimonopoles would make their anni-
hilation with one another highly probable prior to possible separation into bulk matter and
bulk antimatter.16
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