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After the discovery of parity violation in weak interactions in 1957 [1], Landau [2], as well
as Lee and Yang [3], proposed that this interaction is invariant with respect to the combined
operations of charge conjugation and spatial inversion, since called CP invariance. In 1964,
Christenson, Cronin, Fitch and Turlay reported observation of decay of the K0

L meson, then
thought to be the CP -odd state (|K0〉 − |K̄0〉)/√2 into the CP -even final state π+π− [4].1

The so-called superweak theory was postulated shortly thereafter [6, 7, 8], that CP violation
would be confined to the K0-K̄0 system, and indeed until the observation of CP violation
in the B0-B̄0 system in 2001 [9, 10] this remained the case.

Manifestations of CP violation are richer in theB-meson system than in mesons with only
the lighter quarks u, d, s and c, for which only the K0-K̄0 system exhibits this phenomenon.

1 CP Violation in the K-Meson System

The usual path to understanding CP violation in the B-meson system begins by comparison
with theK-meson system. In the latter, the states |K0〉 and |K̄0〉 are eigenstates of the strong
and electromagnetic interactions, which conserve strangeness. However, these states are not
eigenstates of the weak interactions, which violate strangeness, and which are responsible for
Kaon decay. For example, a K0 = ds̄ can transform into a K̄0 = d̄s via the weak interaction
described by the box diagram in Fig. 1 (from [11]).2

Figure 1: Box diagram for the transition |K0〉 ↔ |K̄0〉, where X is a u, c or t quark.

Taking into account the weak interactions, one writes the 2 × 2 Hamiltonian (in the
|K0〉-|K̄0〉 basis) as,

H = M − i

2
Γ, (1)

where the mass matrix M and the decay matrix Γ are Hermitian.3 (Since neutral Kaons
decay, H itself is not Hermitian.) CPT invariance implies that the diagonal components of

1Cronin traces the history of this discovery in [5].
2The Feynman rules for computations of such diagrams indicate that the dominant contribution is from

the quark with mass closest to that of the W boson, namely the top quark [12].
3The classic reference on this topic is the 1966 review by Lee and Wu [13].
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H are equal, and if CP is conserved M and Γ are real. Allowing for the possibility of CP
violation, the Hamiltonian can be written as,

H =

[
m M12

M∗
12 m

]
− i

2

[
γ Γ12

Γ∗
12 γ

]
. (2)

Solving |H − λI| = λ2 − 2H11λ +H2
11 −H12H21 = 0 for the eigenvalues λ, we find,

λ = H11 ±
√
H12H21 = m± Re

√
H12H21 − i

2

(
γ ∓ 2 Im

√
H12H21

)
(3)

where the state with the longer lifetime (smaller Γ), |K0
L〉, has higher mass than the shorter-

lived state |K0
S〉,

mL,S = m± Δm

2
= m± Re

√
H12H21 , ΓL,S = γ ∓ ΔΓ

2
= γ ∓ 2 Im

√
H12H21. (4)

The mass and width differences between the states |K0
L〉 and |K0

S〉 are given by,4

Δm = 2Re
[(
M12 − i

2
Γ12

) (
M∗

12 − i
2
Γ∗

12

)]1/2
,

ΔΓ = 4 Im
[(
M12 − i

2
Γ12

) (
M∗

12 − i
2
Γ∗

12

)]1/2
.

(5)

We define the eigenstates via the complex coefficients p and q, where |p|2 + |q|2 = 1,
according to,

|K0
L,S〉 = p|K0〉 ∓ q|K̄0〉, |K0〉 =

|K0
S〉 + |K0

L〉
2p

, |K̄0〉 =
|K0

S〉 − |K0
L〉

2q
. (6)

Then, H|K0
S〉 = λS |K0

S〉, and, say, the |K0〉 component of this relation implies that,

q

p
≡ 1 − ε

1 + ε
=

√
H21

H12
=

√
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

=
H21√
H12H21

= 2
M∗

12 − i
2
Γ∗

12

Δm− i
2
ΔΓ

. (7)

In terms of the parameter ε, the states are,

|K0
S〉 =

(1 + ε)|K0〉 + (1 − ε)|K̄0〉√
2(1 + |ε|2)

, |K0〉 =

√
2(1 + |ε|2)
2(1 + ε)

[|K0
S〉 + |K0

L〉
]
, (8)

|K0
L〉 =

(1 + ε)|K0〉 − (1 − ε)|K̄0〉√
2(1 + |ε|2)

, |K̄0〉 =

√
2(1 + |ε|2)
2(1 − ε)

[|K0
S〉 − |K0

L〉
]
. (9)

If M and Γ were real, then p = q and ε would be zero, so that a nonzero ε is evidence for
ΔS = 2 CP violation.5 (In the limit of vanishing ε, the weak states would be CP eigenstates:

4The mass difference |Δm| was first measured in [14, 15], and the sign was first determined in [16, 17, 18].
Δm/m ≈ 7 × 10−15, and Δm/Γ ≈ 2Δm/ΓS ≈ 0.94.

5A nonzero value for ε was first measured by [4]. The present best value is |ε| = 0.00223± 0.00001.
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K0
S → K0

1 would have CP +; K0
L → K0

2 would have CP −.) This will be referred to as
CP violation in the mixing, which is observable because of the substantial difference in the
lifetimes of the K0

S (9 × 10−11 s) and the K0
L (5 × 10−8 s).

It is also possible to have (direct) CP violation in the decays of Kaons, parameterized
by the ΔS = 1 CP -violating parameter ε′, which arises from different isospin phases in the
amplitudes for the decays K → 2π,

a0 = 〈ππ, I = 0 |HW |K0〉 ,
a2 = 〈ππ, I = 2 |HW |K0〉 ,

(10)

and,

ε′ ∝ Im

(
a2

a0

)
. (11)

In the Standard Model, it is expected that ε′ � ε, and experimentally one finds [19, 20] that,

ε′

ε
≈ 10−3. (12)

Therefore, in the Kaon system, CP violation with ΔS = 2 is much larger than that with
ΔS = 1.

2 CP Violation in the B-Meson System

The neutral B-mesons B0
d = db̄ and B0

s = sb̄ have relatively long lifetimes, τB0
d

= 1.52×10−12

s (first measured in [21, 22]), τB0
s

= 1.51 × 10−12 s (first measured in [23]),6 such that the
decay point of a B0-meson can be resolved from its production point, permitting studies of
B0-B̄0 mixing as a function of time.

2.1 Mixing Analysis

For B-mesons, the mixing formalism is identical to that given in eqs. (1)-(9). However, there
are some significant differences between the B-meson and the K-meson systems. First of
all, since B mesons are so heavy, the phase space for their decays is quite large. Therefore,
both B and B̄ have essentially the same lifetime, so that ΔΓ/Γ � 1. We will not label the
eigenstates of the B-meson system with subscripts S and L, but with subscripts + and -,
where |B0

+〉 has higher mass than |B0
−〉.

Furthermore, calculations [24] based on the box diagram in the Standard Model have
shown that, for the B-meson system, Γ12 �M12, which leads to the result that ΔΓ � ΔM .
(We note that this is quite different than the K-meson system, where there is a substantial
lifetime difference, due to the differing phase space for the 2π and 3π channels.) We will
therefore neglect ΔΓ in what follows for the B-meson system.

6For comparison, τD0 = 4.1× 10−13 s.
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For the same reason, the ΔB = 2 CP -violating parameter in the B system, εB, is also
small, ∣∣∣∣1 − εB

1 + εB

∣∣∣∣ =
∣∣∣∣qp
∣∣∣∣ � 1 − 1

2
Im

Γ12

M12
≈ 1, (13)

So the ratio p/q is essentially a pure phase for B-mesons.
The CP eigenstates of the neutral B-meson system can now be written as,

|B0
+〉 = p|B0〉 + q|B̄0〉, |B0〉 =

|B0
+〉+|B0

−〉
2p

,

|B0
−〉 = p|B0〉 − q|B̄0〉, |B̄0〉 =

|B0
+〉−|B0

−〉
2q

.
(14)

Because the lifetimes of the B0
+ and B0

− are nearly the same (ΔΓd/Γd ≈ 1/60, ΔΓs/Γs ≈ 1/6),
distinguishing these states to exhibit CP violating in the mixing is not practical.7

However, in the B-system, one situation is reversed with respect to the Kaon system,
namely, “direct” CP violation in B-decays (ΔB = 1) can be large. To have an observable ef-
fect of CP violation, there must be interference between two decay amplitudes with different
phases, as discussed further in sec. 2.3.1.

A relevant parameter for B-B̄ mixing is xq, the ratio of the energy of the oscillation (i.e.,
the mass difference) and the total width for the Bq mesons (q = d, s),

xq =
ΔMq

Γq
=

(transition energy)

(mean total width)
. (15)

After all, mixing hardly matters if the particle decays before it has a chance to oscillate
into its antiparticle. The mixing parameter for B0

d-mesons is xd = 0.78 (first measured
in [26, 27]), while that for B0

s -mesons is xs = 26 (first measured in [28, 29]).8 The large
value of xs permits multiple meson-antimeson oscillations to be observed more easily in the
B0

s -system than in any other, as shown in Fig. 2.

Figure 2: B0
s -B̄

0
s oscillations as observed in [32].

The role of the mixing parameter x can be seen explicitly by considering the time evo-
lution of B mesons. Because of B0-B̄0 mixing, a state which starts out as a pure B0 or B̄0

7This may have been first discussed in [25].
8For comparison, the mixing parameter for D0-mesons is x = 0.6 (first measured in [30, 31]), while for

K0-mesons x = 0.94 as noted earlier.
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will evolve in time to a mixture of B0 and B̄0,

|B0〉 =
|B0

+〉 + |B0
−〉

2p
→ 1

2p

[
e−iM+te−Γt/2|B0

+〉 + e−iM−te−Γt/2|B0
−〉
]
,

=
e−Γt/2

2p

{
e−i(M+ΔM/2)t

[
p|B0〉 + q|B̄0〉]+ e−i(M−ΔM/2)t

[
p|B0〉 − q|B̄0〉]} ,

= F+(t)|B0〉 +
q

p
F−(t)|B̄0〉 , (16)

|B̄0〉 → p

q
F−(t)|B0〉 + F+(t)|B̄0〉 , (17)

where,

F+(t) = e−iMte−Γt/2 cos(ΔMt/2) = e−iMt̃/Γe−t̃/2 cos(xt̃/2),

F−(t) = ie−iMte−Γt/2 sin(ΔMt/2) = ie−iMt̃/Γe−t̃/2 sin(xt̃/2),
(18)

t̃ = t/Γ measures time in units of the B-lifetime Γ, and x = ΔΓ/M is the mixing parameter
defined in eq. (15).

2.2 The CKM Quark-Mixing Matrix

Before discussing CP violation in B-meson decay it is useful to introduce the so-called CKM
quark-mixing matrix (named after Cabibbo [33], Kobayashi and Maskawa [34]).

The issue is that the weak interactions of the quarks u, c, t, d, s and b as participate in
the strong interaction do not have simple weak-interaction couplings u ↔ W+d, c ↔ W+s,
t ↔ W+b, but rather these weak couplings can be represented as u ↔ W+d′, c ↔ W+s′,
t↔ W+b′, via the notation,⎛

⎜⎜⎜⎝
d′

s′

b′

⎞
⎟⎟⎟⎠ = VCKM

⎛
⎜⎜⎜⎝

d

s

b

⎞
⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

d

s

b

⎞
⎟⎟⎟⎠ , (19)

where VCKM is a unitary matrix, and Vus is the (relative) strength of the coupling u↔ W+s,
etc. The matrix elements can (unfortunately) be written many ways, with an early form
given in [35], while the now-standard form (introduced in [36]) writes c13 for cos θ12, s23 for
sin θ23, etc., where θ12, θ13 and θ23 are mixing angles,

VCKM =

⎛
⎜⎜⎜⎝

c12 s12 0

−s12 c12 0

0 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

1 0 0

0 c23 s23

0 −s23 c23

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

c13 0 s13 e
−iδ

0 1 0

−s13 e
iδ 0 c13

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

c12c13 s12c13 s13 e
−iδ

−s12c23 − c12s23s13 e
−iδ c12c23 − s12s23s13 e

−iδ s23c13

s12s23 − c12c23s13 e
−iδ −c12s23 − s12c23s13 e

−iδ c23c13

⎞
⎟⎟⎟⎠ . (20)
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This form is also standard in the description of three-neutrino mixing, where it is called the
Maki-Nakagawa-Sakata matrix [37] (where the mixing angles θij and the CP -violating phase
δ have different values and a different physical context; CP violation is expected in neutrino
mixing). The notion of neutrino mixing preceded that of quark mixing, but experimental
evidence for the latter came first.

A popular approximation to the CKM-matrix is due to Wolfenstein [38],⎛
⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎠ ≈

⎛
⎜⎜⎜⎝

1 − λ2

2
+ λ4

24
λ Aλ3(ρ̄− iη̄)

−λ 1 − λ2

2
− λ4(A2

8
− 1

24
) Aλ2

Aλ3(1 − ρ̄ − iη̄) −Aλ2 + Aλ4(1
2
− ρ− iη) 1 − A2λ4

2

⎞
⎟⎟⎟⎠ ,

(21)
in which the expansion parameter λ is essentially the sine of the Cabibbo angle.9 A variant
is to define ρ eiδ = ρ̄+ iη̄ such that Vub = Aλ3ρ e−iδ and Vtd = Aλ3(1 − ρ eiδ).

The existence of CP violation in the quark sector corresponds to nonzero η̄ and δ, which
appear most prominently in matrix elements Vub and Vtd. The latter plays a role in the box
diagram, Fig. 1, and hence in meson-antimeson mixing (including K0-K̄0 mixing), but they
do not appear at first order in decay amplitudes of mesons containing only u, d, s and c
quarks. Hence “direct” CP violation will only be significant in the B-meson system.10

The present state of fits to the Wolfenstein parameters is displayed at, for example,
http://ckmfitter.in2p3.fr/

The present fit values are A = 0.82, λ = 0.22, ρ̄ = 0.13, η̄ = 0.35, ρ = 0.37, δ = 70◦.11

An example of the use of the CKM-matrix is in a comparison of the mixing parameters
xd and xs of eq. (15), for B0

d and B0
s -mesons, respectively. The meson-antimeson oscillations

are associated with the box diagram of Fig. 1, which is dominated by exchange of the top
quark (as mentioned in footnote 2). Hence, to a first approximation,

xs

xd

≈ |Vts|2
|Vtd|2

≈ 1

λ2 |1 − ρ̄− iη̄|2 − 1

λ2[(1 − ρ̄)2 + η̄2]
≈ 23.5, (22)

which compares reasonably well to the experimental value of 33 for this ratio.

2.2.1 The Unitarity Triangle

The CKM matrix is unitary, and describes the behavior of the weak interaction of quarks
under a change of basis of the quark states. Consideration of aspects of CP violation are
independent of the choice of basis led Jarlskog [40] to note the existence of an invariant
property of certain combinations of CKM-matrix elements. Namely, if,⎛

⎝ Vij Vik

Vlj Vlk

⎞
⎠ (23)

9The expansion to fourth order in λ is from [39], which slightly modified the form given in [38] to become
a better approximation to the now-standard form (20).

10Mesons containing t quarks decay quickly to ones containing b quarks, with amplitude ∝ Vtb which does
not involve CP violation.

11in 1990 the values of ρ̄ and η̄ were very poorly known, as represented by the band labeled εK is Fig. 4.
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is the 2 × 2 submatrix obtained by deleting row m and column n of VCKM , then,

J = (−1)m+n Im[VijVlkV
�
ikV

�
lj ] (24)

is the same for any choice of m n. Comparison with the forms (21)-(20) show that the
Jarlskog invariant J is nonzero only if η̄ and δ are nonzero, i.e., only if CP violation exists.12

A useful geometric interpretation of the Jarlskog invariant was given by Bjorken [41, 42]
(see also [43]),13 noting that the unitarity of the CKM-matrix implies that the products of
column “vectors” of VCKM with row “vectors” of V †

CKM obey,∑
i

VijV
�
ik = δjk,

∑
j

VijV
�
kj = δik. (25)

In particular,

VudV
�
ub + VcdV

�
cb + VtdV

�
tb = 0,

VudV
�
ub

VcdV �
cb

+ 1 +
VtdV

�
tb

VcdV �
cb

= 0, (26)

so the three complex numbers, 1, VtdV
�

tb/VcdV
�
cb and VudV

�
ub/VcdV

�
cb, if considered as “vectors”

and placed “head to tail,” form a triangle on the complex plane.

Figure 3: Versions of the unitarity triangle, with the upper version from [41].

Noting the directions of the “vector” sides of the triangle its, area is14

A = −1

2
Im

[
VudV

�
ub

VcdV
�
cb

]
=

− Im[VudVcbV
�
ubV

�
cd]

2 |Vcd|2 |Vcb|2
=

J

2 |Vcd|2 |Vcb|2
≈ η̄

2

(
1 − λ2

2

)
. (27)

12In the parameterization of eq. (20), J = c12c23c
2
13s12s23s13 sin δ.

13Use of triangles to illustrate relations among complex CP -violating amplitudes was made earlier in
[36, 44].

14The area of the triangle whose sides are the “vectors” VudV
�
ub, VcdV

�
cb and VtdV

�
tb is simply J/2.
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That is, the Jarlskog invariant is proportional to the area of the so-called unitarity triangle,
and this area is approximately the one half of CP -violating parameter η̄ = ρ sin δ.

The interior angles of the unitarity triangle are (unfortunately) called by two different
conventions,15

φ1 = β = 2π − φ(Vtd) ≡ 2π − φtd,

φ2 = α = π − φ1 − φ3 = −π + φtd + φub,

φ3 = γ = φ(V ∗
ub) = −φ(Vub) ≡ −φub,

(28)

where φub and φtd are the phases of Vub and Vtd, respectively.16 In principle, these angles (and
the CP -violating phases) could be determined from measurements only of the magnitudes
of the sides of the unitarity triangle, if indeed the complex quantities 1, VtdV

�
tb/VcdV

�
cb and

VudV
�
ub/VcdV

�
cb actually form a closed triangle. Hence, one test of the CKM formalism is that

the unitarity triangle is closed, and that the interior angles sum to π.
Results of measurements of parameters of the CKM-matrix are commonly displayed on

a plot in the (complex) (ρ̄, η̄) plane, as in Fig. 4 from the ckmfitter site.

γ

α

α

dmΔ

Kε

KεsmΔ & dmΔ

ubV

βsin 2
(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

α

βγ
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> 
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FPCP 13

CKM
f i t t e r

Figure 4: Present best fits to CKM-matrix parameters, displayed on the (ρ̄, η̄) plane.
The band labeled εK is all that can be determined from the K0-K̄0 system alone.

2.3 CP Violation in B-Meson Decay

We review six methods for measuring the CP -violating phases φub and φtd of the CKM-
matrix via B-decays that are free from uncertainties due to strong final-state phases,

15The notation α, β, γ may have been introduced in [45].
16In the notation of eq. (20), φub = δ. However, in the following we use the symbol δ to characterize

a phase difference between two decay amplitudes, so we do not further use the symbol δ to mean the a
CP -violating phase.
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1. B decays to D0X, D̄0X, and D0
1,2X where X 
= X̄ .

Ex: B± → D0K± [46] (the first observation of CP violation for charged mesons) and
B0

d → DK�0 measure φub (i.e., φ3 = γ).

2. Neutral B-meson decays to f and f̄ where f 
= f̄ .

Ex: B0
d → D±π∓ measures 2φtd + φub and B0

s → D±
s K

∓ measures φub.

3. Neutral B-meson decays to D0X, D̄0X, and D0
1,2X where X = X̄.

Ex: B0
d → DK0

S measures φub, 2φub + φtd and φub + φtd, and B0
s → Dφ measures φub.

4. Neutral B-meson decays to CP eigenstates.

Ex: B0
d → J/ψK0

S measures φtd (i.e., φ2 = β) [9, 10], B0
d → π+π− measures φtd + φub,

and B0
s → ρ0K0

S measures φub.

5. B decays to sets of final states related by isospin.

Ex: B0
d → π+π−, π0π0 and B+ → π+π0 measure φtd + φub free from uncertainty due

to penguin contributions.

6. Angular analysis of B decays to mixtures of CP eigenstates.

Ex: B0
d → J/ψK0

Sπ
0 and D�+D�− measure φtd, and B0

d → ρ+ρ− and ρ0ρ0 measure
φtd + φub (i.e., φ1 = α) [47, 48].

All of these except the well-known method 4 involve non-CP eigenstates. Methods 1-3 allow
extraction of φub from Bu and Bd, and will require greater emphasis on Kaon identification
than methods 4-6. Methods 5 and 6 require photon detection in most cases. Method 1 does
not require tagging of the particle/antiparticle character of the second B, and so could be
used at a symmetric e+e− collider without the penalty due to mixing of methods 2-6. The
mode B0

d → J/ψK0
S which measures φtd via method 4 is the most accessible of all those

considered here.

2.3.1 The Need for Interference in CP -Violating Processes

In the Standard Model, CP violation in a process described by a single graph manifests itself
only as a phase factor. If the amplitude for a single graph B → f is written,

A(B → f) ≡ Af = |Af | eiφW eiδS , (29)

where φW is a phase due to the weak interaction, and δS is a phase due to strong final-state
interactions, then the CP conjugate process has amplitude,

A(B̄ → f̄ ) ≡ Āf̄ = |Af | e−iφW eiδS . (30)

Hence CP violation cannot be discerned as a rate difference between a decay and its CP -
conjugate decay if only a single graph contributes to the amplitude.

CP violation can only be revealed in total-rate measurements of B → f and B̄ → f̄
when there is interference between two or more decay amplitudes with differing weak phases
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and differing strong phases. To verify the last remark, consider the case where two graphs
contribute to a decay, written as,

A(B → f) = |A1| eiφ1eiδ1 + |A2| eiφ2eiδ2, (31)

so the CP -conjugate decay has amplitude,

A(B̄ → f̄) = |A1| e−iφ1eiδ1 + |A2| e−iφ2eiδ2. (32)

The corresponding decay rates are given by,

Γ(B → f) = |A1|2 + |A2|2 + 2 |A1| |A2| cos(φ+ δ), (33)

and,
Γ(B̄ → f̄) = |A1|2 + |A2|2 + 2 |A1| |A2| cos(φ− δ), (34)

where φ = φ1−φ2 and δ = δ1−δ2. Only if both φ and δ are nonvanishing can the interference
term be determined from measurements of the two decay rates.

Even if this condition is satisfied the strong-interaction phase difference δ and the mag-
nitudes |Af | and

∣∣Āf̄

∣∣ will not typically be known, and the CP -violating phase cannot be
determined. In this note we examine six methods by which the uncertainties due to strong
phases can be avoided. These are introduced in the following subsection, and then discussed
in greater detail in the subsequent sections.

2.3.2 Six Methods for Extracting CP -Violating Phases

The most familiar method for study of the CP -violating phases in the CKM-matrix is called
method 4 here. Method 1 is in some sense the most straightforward in principle, and can be
used with charged B-mesons, and even with B-baryons. Methods 2-6 all utilize the mixing
of neutral B-mesons to some extent, and hence are conceptually more complex.

A favorable theoretical result is that method 4, the study of neutral B decays to CP
eigenstates, can in principle determine all three angles φi by measurement of three different
decays [39]. However, the anticipated difficulty in measuring φub via decays such as B0

s →
ρ0K0

S , due to the small branching ratios (and poor signal of Bs at e+e− colliders), has been
a motivation to explore the additional methods of analysis of CP violation reviewed in this
paper.

1. B decays to D0X, D̄0X, and D0
1,2X where X 
= X̄

When a B particle can decay both to D0X and D̄0X (and so B̄ decays to both D̄0X̄
and D0X̄), then the decays

B → D0
1,2X, and B̄ → D0

1,2X̄, where D0
1,2 ≡

D0 ± D̄0

√
2

, (35)

exhibit a CP -violating asymmetry. Measurement of the six (or eight) decay modes
listed will permit isolation of the CP -violating amplitude, both in magnitude and
phase.
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The final state D0X need not be self conjugate, and it is actually desirable that it not
be, so that no effects of mixing are present, and no tagging of the second B is needed.
Thus, method 1 could be used at a symmetric e+e− collider without the penalty due to
mixing of methods 2-6. This method works both for decays of B-mesons and b-baryons.

The general approach of methods 1-3 was largely anticipated by Carter and Sanda
[49, 50], and more particularly by Gronau and London [51]. Method 1 as distinct from
method 3 was first examined by Gronau and Wyler [52], with further discussions in
[53, 54, 55]. Application of method 1 to b-baryons was first discussed by Aleksan,
Dunietz and Kayser [56, 57].

If CP violation is found in such an analysis then it cannot be due to a superweak
interaction [7, 8], which postulates that CP violation occurs only in mixing of neutral
mesons. Thus, method 1 may be used to circumvent possible ambiguities [58] in the
use of method 4 to prove or disprove the superweak model.

2. Neutral B-meson decays to f and f̄ where f 
= f̄

If a neutral B-meson decays to both a final state f and its CP -conjugate state f̄ , then
the interference of amplitudes needed for measurable CP violation arises due to mixing
(whether or not there is CP violation in the mixing). A time-dependent analysis of
the four decay modes B(B̄) → f, f̄ can isolate the CP -violating phase.

Tagging of the particle-antiparticle character of the second B in the event is required.

The original paper on method 2 is by Gronau and London [51]. Discussion of method
2 as separate from method 3 was first been given by Aleksan et al. [59]. Method 2 is
an improvement on earlier discussions by Du, Dunietz and Wu [60], and by Dunietz
and Rosner [61], in which only two of the four related decays were utilized.

3. Neutral B-meson decays to D0X, D̄0X, and D0
1,2X where X = X̄

If a neutral B-mesons decays to both a final state D0X and D̄0X where X is self
conjugate (CP (X) ≡ X̄ = ±X), then methods 1 and 2 can be combined. In a case of
interest two different CP -violating phases can be determined from the time-dependent
analysis of six (or eight) related decay modes.

As previously mentioned, method 3 was first discussed by Gronau and London [51].

4. Neutral B-meson decays to CP eigenstates

If a neutral B-meson decays to a final state f that is a CP eigenstate, then as in
method 2, CP violation becomes observable via the interference due to mixing. But,
since only a single final state is involved, the strong-interaction phase does not appear.
Thus we recover the well-known result that a time dependent analysis of the two modes
B(B̄) → f can isolate the CP -violating phases.

The advantages of measuring decays to CP eigenstates were first noted by Bigi and
Sanda [62]. The important relation between decays to CP eigenstates and unitarity of
the CKM matrix was first emphasized by Bjorken [41, 42], as discussed in sec. 2.2.1.
The measurement of the three angles of the unitarity triangle by three specific decays
to CP eigenstates was first proposed by Krawczyk et al. [39].
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5. B decays to sets of final states related by isospin

In decays B+
u → f+ and B0

d → f0 where the final states each arise due to the inference
of two amplitudes, and f+ and f0 are related by isospin, the CP -violating phase can
be isolated by a detailed isospin analysis.

The utility of the isospin analysis in removing uncertainties due to penguin diagrams
in B decays was first demonstrated by Gronau and London [63]. Further discussions
have been given by Nir and Quinn [64], by Lipkin et al. [65] and by Gronau [66].

6. Angular analysis of B decays to mixtures of CP eigenstates

If a neutral B-meson decays to a self-conjugate state f , but this is not a pure CP
eigenstate (as holds when f consists of two spin-1 mesons) method 4 cannot be carried
out. However, a detailed analysis of the angular distribution of the secondary-decay
products can separate the final state into CP (even) and CP (odd) components and the
CP -violating phase extracted.

Methods of angular analysis for B decays to mixtures of CP eigenstates have been
presented for several years [67, 68, 69], with more discussion by Kayser et al. [70], by
Dunietz et al. [71], and by Kramer and Palmer [72, 73].

2.3.3 Time Dependence of a CP -Violating Asymmetry

Before discussing the six methods for measurement of CP violation in even greater detail,
we note that these methods typically involve measurement of the time dependence of an
asymmetry of the form,

Af (t) =
Γ(B0(t) → f) − Γ(B̄0(t) → f̄ )

Γ(B0(t) → f) + Γ(B̄0(t) → f̄)
. (36)

If we consider a nonleptonic final state f such that both B0 and B̄0 can decay both to it
(and to its CP -conjugate state f̄), this asymmetry can be calculated from eqs. (16)-(18).
We have,

Γ(
(–)

B0(t) → f) =

∣∣∣∣〈(–)

f |(–)B0(t)〉
∣∣∣∣
2

=

∣∣∣∣〈(–)

f |(–)B0〉
∣∣∣∣
2

e−t/τ

[
cos2 ΔMt

2
+
∣∣∣(–)αf

∣∣∣2 sin2 ΔMt
2

− Im
(–)

αf sinΔMt

] (37)

where we have introduced,
αf =

q

p
ρf , ᾱf =

p

q
ρ̄f , (38)

and,

ρf =
〈f |B̄0〉
〈f |B0〉 , ρ̄f =

〈f̄ |B0〉
〈f̄ |B̄0〉 . (39)

There are several points worth noting here. First of all, q/p is a pure phase, as noted
in eq. (13). Secondly, when only one amplitude contributes to B0 → f (and its
CP -conjugate to B̄0 → f̄) then, recalling eqs. (29)-(30),
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∣∣〈f |B0〉∣∣ = ∣∣〈f̄ |B̄0〉∣∣ , ∣∣〈f̄ |B0〉∣∣ = ∣∣〈f |B̄0〉∣∣ , (40)

i.e.,
∣∣ρf

∣∣ = ∣∣ρ̄f

∣∣. If there were no mixing there would now be no CP violation. However, in
the presence of mixing the asymmetry (36) becomes,

Af(t) =
−(Imα − Im ᾱ) sin ΔMt

2 cos2(ΔMt/2) + 2
∣∣ρf

∣∣2 sin2(ΔMt/2) − (Imα+ Im ᾱ) sinΔMt
(41)

There may still be complications, however, due to ρf (and ρ̄f). To see this, recall the
Wolfenstein approximation (21) to the CKM-matrix, in which large CP -violating phases
appear only in Vub and Vtd. Then, one can estimate the size of certain B-decay diagrams
just by counting powers of λ. For example, consider the final state D+π−. Here,

〈D+π−|B0〉 ∼ V ∗
ubVcd ≈ O (λ4

)
,

〈D+π−|B̄0〉 ∼ VcbV
∗
ud ≈ O (λ2

)
.

(42)

Therefore ρf = 〈D+π−f |B̄0〉/〈D+π−|B0〉 ≈ λ−2 ≈ 20. According to eq. (36) the asymmetry
goes like 1/ρf for large ρf , so it will be quite small for most values of t. If we had considered

the final state D−π+, then we would have ρf ∼ λ2 ∼ 0.05, and the asymmetry would
again be small since Imαf is proportional to ρf . Furthermore, for both of these final states,
hadronization effects are important. For example, for the final state D+π− from B0 decay
the W hadronizes into the D, while from B̄0 decay it hadronizes into the π. There is no
reliable way to calculate these effects.

These problems can be avoided by considering final states which are CP -eigenstates
(f = ±f̄ ). Because of mixing, interference will occur between 〈f |B0〉 and 〈f |B̄0〉, but now
the latter is equal to ±〈f̄ |B̄0〉, which is equal in magnitude to 〈f |B0〉 according to eq. (40).
Hence, the amplitude ratio ρf will also be a pure phase (i.e., |ρf | = 1).

For example, in the decay B0 → π+π− we have,

〈π+π−|B0〉 ∼ V ∗
ubVud = Aρλ3eiδ,

〈π+π−|B̄0〉 ∼ VubV
∗

ud = Aρλ3e−iδ.
(43)

In addition, any hadronization phases must cancel in ρf , since the two diagrams are CP
conjugates of one another, and the strong interactions are CP invariant. We therefore
obtain ρf = exp(−2iδ). And, from

∣∣ρf

∣∣ = 1 we get,

Im ᾱf = − Imαf . (44)

Equation (44) holds for any decay to a CP -eigenstate that is described by a single
weak amplitude. Thus, for this class of final states we have (using eqs. (15) and (37)),

Γ(
(–)

B0
q(t) →

(–)

f ) =
∣∣〈f |B0

q 〉
∣∣2 e−t/τ

[
1 ∓ Imαf sinxq

t
τ

]
(45)

Now, the asymmetry (36) assumes the elegantly simple form (first given in [49]),

Af(t) = − Imαf sin xq
t

τ
. (46)

Further details for this case are given in sec. 2.5.
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2.3.4 Time Dependence of the Decay of an Entangled B0-B̄0 Pair

The quantum correlations first discussed by Einstein, Podolsky and Rosen [74] arise when B0

and B̄0 meson are produced at time t = 0 in an entangled state of definite CP , (|B0
1〉|B̄0

2〉 ±
|B̄0

1〉|B0
1〉)/

√
2, where the +(−) sign is for the CP -even(odd) state, and indices 1,2 refer to

the particles of momenta P1 and P2.
In the remainder of this note, time is measured in units of the B-lifetime.

Application to B0
d Mixing

We first consider the case that both mesons decay to a state g 
= ḡ (such as eνX,
ḡ = e−ν̄eX̄) via a single weak amplitude that allows a determination as to whether each
meson was a B0 or B̄0 at the times t1 and t2 of their decays (as in the experiment [27] which
measured the mixing parameter xd.). A quantity of interest here is the ratio of the number
of events where B1 and B2 both decay to g or both to ḡ (which can only occur as an effect
of B0-B̄ mixing) to the number of events where one meson decays to g and the other to ḡ,

r =
N(B0

1 → g, B0
2 → g) +N(B̄0

1 → ḡ, B̄0
2 → ḡ)

N(B0
1 → g, B̄0

2 → ḡ) +N(B0
1 → g, B̄0

2 → ḡ)
, (47)

Recalling eqs. (16)-(17), the time evolution of the entangled initial state is given by,

|B0
1〉|B̄0

2〉 →
(
F+(t1)|B0

1〉 +
q

p
F−(t1)|B̄0

1〉
)(

p

q
F−(t2)|B0

2〉 + F+(t2)|B̄0
2〉
)
, (48)

|B̄0
1〉|B0

2〉 →
(
p

q
F−(t1)|B0

1〉 + F+(t1)|B̄0
1〉
)(

F+(t2)|B0
2〉 +

q

p
F−(t2)|B̄0

2〉
)
, (49)

|B0
1〉|B̄0

2〉 ± |B̄0
1〉|B0

2〉√
2

→ p

q
[F+(t1)F−(t2) ± F−(t1)F+(t2)]

|B0
1〉|B0

2〉√
2

+[F+(t1)F+(t2) ± F−(t1)F−(t2)]
|B0

1〉|B̄0
2〉√

2

+[F−(t1)F−(t2) ± F+(t1)F+(t2)]
|B̄0

1〉|B0
2〉√

2

+
q

p
[F−(t1)F+(t2) ± F+(t1)F−(t2)]

|B̄0
1〉|B̄0

2〉√
2

= eiM(t1+t2) e−(t1+t2)/2
{
± ip
q

sin
x(t1 ± t2)

2

|B0
1〉|B0

2〉√
2

+ cos
x(t1 ± t2)

2

|B0
1〉|B̄0

2〉√
2

± cos
x(t1 ± t2)

2

|B̄0
1〉|B0

2〉√
2

+
iq

p
sin

x(t1 ± t2)

2

|B̄0
1〉|B̄0

2〉√
2

}
. (50)

Note that the amplitudes vanish for the combinations of two like particles, |B0
1〉|B0

2〉 and
|B̄0

1〉|B̄0
2〉, at times t1 = t2 if the B0-B̄0 is produced in a CP -odd state. Such persistence

of the initial quantum correlation for spacelike-separated events puzzled Einstein, Podolsky
and Rosen, and remains ever impressive.
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With the good assumption that the total decay rates obey Γ[B̄0 → ḡ] = Γ[B0 → g], the
time dependences of the rates for decays are,

Γ[B0
1(t1) → g] Γ[B0

2(t2) → g] =

∣∣∣∣pq [F+(t1)F−(t2) ± F−(t1)F+(t2)]
〈g|B0

1〉〈g|B0
2〉√

2

∣∣∣∣
2

= sin2 xt1 ± x2t2
2

e−(t1+t2)Γ2[B0 → g]

2
, (51)

Γ[B̄0
1(t1) → ḡ] Γ[B̄0

2(t2) → ḡ] =

∣∣∣∣qp [F−(t1)F+(t2) ± F+(t1)F−(t2)]
〈ḡ|B̄0

1〉〈ḡ|B̄0
2〉√

2

∣∣∣∣
2

= Γ[B0
1(t1) → g] Γ[B0

2(t2) → g], (52)

Γ[B0
1(t1) → g] Γ[B̄0

2(t2) → ḡ] =

∣∣∣∣[F+(t1)F+(t2) ± F−(t1)F−(t2)]
〈g|B0

1〉〈ḡ|B̄0
2〉√

2

∣∣∣∣
2

= cos2 xt1 ± x2t2
2

e−(t1+t2)Γ2[B0 → g]

2
, (53)

Γ[B̄0
1(t1) → ḡ] Γ[B0

2(t2) → g] =

∣∣∣∣[F−(t1)F−(t2) ± F+(t1)F+(t2)]
〈ḡ|B̄0

1〉〈g|B0
2〉√

2

∣∣∣∣
2

= Γ[B0
1(t1) → g] Γ[B̄0

2(t2) → ḡ]. (54)

Note that

Γ[B0
1(t1) → g] Γ[B0

2(t2) → g] + Γ[B̄0
1(t1) → ḡ] Γ[B̄0

2(t2) → ḡ] + Γ[B0
1(t1) → g] Γ[B̄0

2(t2) → ḡ]

+Γ[B̄0
1(t1) → ḡ] Γ[B0

2(t2) → g] = e−(t1+t2)Γ2[B0 → g], (55)

and that B1 and B2 cannot both decay to g (or to ḡ) at the same time t1 = t2 if they are in
a CP -odd state.

For a total of N0 produced B0-B̄0 pairs, the numbers of observed decay combinations
would be,

N(B0
1 → g, B0

2 → g) = N(B̄0
1 → ḡ, B̄0

2 → ḡ)

= N0

∫ ∞

0

dt1

∫ ∞

0

dt2

[
cos2 xt1

2
sin2 xt2

2
+ sin2 xt1

2
cos2 xt2

2
± 2 cos

xt1
2

sin
xt1
2

cos
xt2
2

sin
xt2
2

]
e−(t1+t2)Γ2[B0 → g]

2
=
N0Γ

2[B0 → g]

4

x2(2 ± 1 + x2)

(1 + x2)2
, (56)

N(B0
1 → g, B̄0

2 → ḡ) = N(B̄0
1 → ḡ, B0

2 → g)

= N0

∫ ∞

0

dt1

∫ ∞

0

dt2

[
cos2 xt1

2
cos2 xt2

2
+ sin2 xt1

2
sin2 xt2

2
∓ 2 cos

xt1
2

sin
xt1
2

cos
xt2
2

sin
xt2
2

]
e−(t1+t2)Γ2[B0 → g]

2
=
N0Γ

2[B0 → g]

4

2 + x2(2 ∓ 1 + x2)

(1 + x2)2
. (57)

As expected,

N(B0
1 → g, B0

2 → g) +N(B̄0
1 → ḡ, B̄0

2 → ḡ) +N(B0
1 → g, B̄0

2 → ḡ) +N(B0
1 → g, B̄0

2 → ḡ)

= N0Γ
2[B0 → g]. (58)
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Then, (as in the Appendix of [62] with y = 0),

r =
N(B0

1 → g, B0
2 → g) +N(B̄0

1 → ḡ, B̄0
2 → ḡ)

N(B0
1 → g, B̄0

2 → ḡ) +N(B0
1 → g, B̄0

2 → ḡ)
=

x2(2 ± 1 + x2)

2 + x2(2 ∓ 1 + x2)
, (59)

which has nontrivial dependence on x for the B0
d-B̄

0
d system (but not for the B0

s -B̄
0
s system

where xs � 1).

Application to Method 4
We next consider the case that meson B1 decays to a CP -eigenstate f at time t1 (in

units of the B-lifetime) as in method 4 for the study of CP violation in the B0-B̄0 system,
while meson B2 decays to a state g 
= ḡ (such as g = e+νeX) via a single weak amplitude
that allows a determination as to whether the second meson was a B0 or B̄0 at the time t2
of its decay. The CP -violating decay asymmetry is then [50, 62],

A(t1, t2) =
Γ[B1(t1) → f ] Γ[B̄0

2(t2) → ḡ] − Γ[B1(t1) → f ] Γ[B0
2(t2) → g]

Γ[B1(t1) → f ] Γ[B̄0
2(t2) → ḡ] + Γ[B1(t1) → f ] Γ[B0

2(t2) → g]
. (60)

where B1 could be either B0
1 or B̄0

1 .
Recalling eqs. (48)-(50), the products of the decay rates are,

Γ[B1(t1) → f ] Γ[B̄0
2(t2) → ḡ] =

∣∣∣∣[F+(t1)F+(t2) ± F−(t1)F−(t2)]
〈f |B0

1〉〈ḡ|B̄0
2〉√

2

+
q

p
[F−(t1)F+(t2) ± F+(t1)F−(t2)]

〈f |B̄0
1〉〈ḡ|B̄0

2〉√
2

∣∣∣∣
2

,

=

∣∣∣∣cos x(t1 ± t2)

2
+
iq

p

〈f |B̄0
1〉

〈f |B0
1〉

sin
x(t1 ± t2)

2

∣∣∣∣
2
e−(t1+t2)Γ[B0 → f ] Γ[B̄0 → ḡ]

2

= [1 + sin 2ϕ sin(xt1 ± xt2)]
e−(t1+t2)Γ[B0 → f ] Γ[B0 → g]

2
, (61)

where 2ϕ is the phase of the ratio q〈f |B̄0
1〉/p〈f |B0

1 〉 = αf = e2iϕ (recalling eqs. (38)-(39)),
and we have assumed that Γ[B̄0 → ḡ] = Γ[B0 → g]. Similarly,

Γ[B1(t1) → f ] Γ[B0
2(t2) → g] =

∣∣∣∣pq [F+(t1)F−(t2) ± F−(t1)F+(t2)]
〈f |B0

1〉〈g|B0
2〉√

2

+[F−(t1)F−(t2) ± F+(t1)F+(t2)]
〈f |B̄0

1〉〈g|B0
2〉√

2

∣∣∣∣
2

,

=

∣∣∣∣ipq 〈f |B0
1〉

〈f |B̄0
1〉

sin
x(t1 ± t2)

2
+ cos

x(t1 ± t2)

2

∣∣∣∣
2
e−(t1+t2)Γ[B0 → f ] Γ[B0 → g]

2

= [1 − sin 2ϕ sin(xt1 ± xt2)]
e−(t1+t2)Γ[B0 → f ] Γ[B0 → g]

2
, (62)

noting that p〈f |B0
1 〉/q〈f |B̄0

1〉 = ᾱf = e−2iϕ so Re(ip〈f |B0
1〉/q〈f |B̄0

1〉) = − sin 2ϕ. Thus, the
decay asymmetry is,

A(t1, t2) = sin 2ϕ sin(xt1 ± xt2). (63)
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If both B’s decay at the same time, one must be a B0 and the other a B̄0, and there can
be no decay asymmetry at such times, since Γ[B0 → f ] Γ[B̄0 → ḡ] = Γ[B̄0 → f ] Γ[B0 → g].
But, when decay time t1 differs from t2, the particle can have mixed into any of the four
combinations B0

1B
0
2 , B̄

0
1B

0
2 , B

0
1B̄

0
2 and B̄0

1B̄
0
2 , and the interference among the four decay

amplitudes leads to a nonzero decay asymmetry.
If the detector cannot determine the decay times t1 and t2, it could still observe the

time-integrated decay rates,∫ ∞

0

∫ ∞

0

Γ[B1(t1) → f ] Γ[B̄0
2(t2) → ḡ] dt1 dt2 =

=

∫ ∞

0

∫ ∞

0

(1 + sin 2ϕ sin(xt1 ± xt2))
e−(t1+t2)Γ[B0 → f ] Γ[B0 → g]

2
dt1 dt2

=

(
1 + sin 2ϕ

x2(1 ± 1)

(1 + x2)2

)
Γ[B0 → f ] Γ[B0 → g]

2
, (64)

∫ ∞

0

∫ ∞

0

Γ[B1(t1) → f ] Γ[B0
2(t2) → ḡ] dt1 dt2 =

=

∫ ∞

0

∫ ∞

0

(1 − sin 2ϕ sin(xt1 ± xt2))
e−(t1+t2)Γ[B0 → f ] Γ[B0 → g]

2
dt1 dt2

=

(
1 − sin 2ϕ

x2(1 ± 1)

(1 + x2)2

)
Γ[B0 → f ] Γ[B0 → g]

2
, (65)

and the time-integrated asymmetry would be,

A = (1 ± 1) sin 2ϕ
x

(1 + x2)2
, (66)

which vanishes if the B’s were produced in a CP -odd state, as occurs at an e+e− collider
operated at the Υ(4S) resonance, where the B-production rate is maximal. In this case,
the B’s are so slowly moving in the laboratory that their decay times cannot be resolved,
and measurements of CP violation could not be made. To avoid this limitation, so-called
asymmetric e+e− colliders were built, following a suggestion by Oddone [75], such that the
e+e− center of mass has sufficient velocity in the lab that the decay points of both mesons
B1 and B2 can be reconstructed, and time-dependent analyses performed, as in [9, 10].

We can say that the Einstein-Podolsky-Rosen effect required that asymmetric e+e− col-
liders to be built for CP violation to be observable in the B0-B̄0 system.

2.4 Method 1: B Decays to D0X, D̄0X, and D0
1,2X where X 
= X̄

When a B meson (i.e., one that contains a b̄-quark) decays to D̄0X via a spectator graph
(graphs I and II of Fig. 6 in Appendix A) this involves a b̄ → c̄ transition, and hence no
weak phase:

A(B → D̄0X) =
∣∣Af̄

∣∣ eiδf̄ , (67)
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where δf̄ is a final-state strong-interaction phase. But when a B meson decays to D0X this
involves the transition b̄→ ū and hence the weak phase −φub appears in the amplitude,

A(B → D0X) = |Af | e−iφubeiδf , (68)

The two amplitudes Af and Af̄ interfere when the D forms one of the CP eigenstates

D0
1,2 = (D0 ± D̄0)/

√
2,

A(B → D0
1,2X) = (|Af | e−iφubeiδf ± ∣∣Af̄

∣∣ eiδf̄ )/
√

2. (69)

In eqs. (67-68) we have supposed that all graphs contributing to each decay have the same
weak phases (which is not necessarily true, as discussed below).

When X 
= X̄ the decays are self-tagging as to whether the parent was a B or a B̄. Then,
even for neutral B’s there is no effect due to mixing on the observed decay rates. Method 1
could be used at a symmetric e+e− collider without the penalty due to mixing of methods
2-6.

Assuming equal production rates for B and B̄ the decay rates are proportional to the
number of decays observed. We can therefore measure,

Γ(B → D̄0X) = Γ(B̄ → D0X̄) ∝ ∣∣Af̄

∣∣2 ,
Γ(B → D0X) = Γ(B̄ → D̄0X̄) ∝ |Af |2 ,

Γ(B → D0
1,2X) ∝ (

∣∣Af̄

∣∣2 + |Af |2)/2 ±
∣∣Af̄

∣∣ |Af | cos(φub + δ),

Γ(B̄ → D0
1,2X̄) ∝ (

∣∣Af̄

∣∣2 + |Af |2)/2 ±
∣∣Af̄

∣∣ |Af | cos(φub − δ),

(70)

recalling eq. (30), and defining δ = δf̄ − δf as the strong-interaction phase difference.
Thus there are eight possible measurements depending on the four quantities

∣∣Af̄

∣∣, |Af |,
cos(φub + δ) and cos(φub − δ). Therefore we can deduce |φub ± δ| and hence determine φub

up to a fourfold ambiguity,

φub =
± |φub + δ| ± |φub − δ|

2
. (71)

The strong phase difference δ depends on the particular final state D0X studied, so if these
measurements can be carried out for different X the discrete ambiguity may be removable.

In contrast to sec. 2.3.1 where only two rate measurements were considered, the use of
4-8 measurements in the present method permits φub to be determined whether on not the
strong interaction phase difference δ is nonvanishing. Indeed, it would be preferable if δ were
zero, as the discrete ambiguity is only twofold in this case.

We now consider examples of particular decay modes that might be used to implement
this procedure. First, we consider the question of identifying the CP eigenstates D0

1,2. From
Table 8 of Appendix A in which the basic two-body decays of the D0 are listed we infer that
the CP (even) state D0

1 can decay according to,

D0
1 → π+π−, K+K−, K0

SK
0
S , K

0
LK

0
L, K

0
Lπ

0, K0
Lη, K

0
Lρ

0, K0
Lω, K

0
Lφ, etc. (72)
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and the CP -odd state D0
2 can decay to,

D0
2 → K0

Sπ
0, K0

Sη, K
0
SK

0
L, K

0
Sρ

0, K0
Sω, K

0
Sφ, etc. (73)

Several of the decays of the D0
2 have been observed, and the fraction of D0’s that decay as D0

2

is at least 2%. However, all D0
2 decays except K0

Sρ
0 → π+π−π+π− and K0

Sφ→ π+π−K+K−

involve at least two final-state photons. If we suppose that only all-charged final-states
will be reconstructed at a hadron collider, then only about 0.5% of all D0’s will decay to
identifiable D0

2 modes. The D0
1 decays predominantly to all-charged daughters, but again

only about 0.5% of all D0’s will decay to identifiable D0
1 modes. In sum, about 2-5% of D0’s

might be usable for the D0
1,2 analysis at an e+e− collider, but only about 1% at a hadron

collider.
In principle, the decays B → D�0X decays are also usable for the present analysis as

D�0
1,2 = (D�0 ± D̄�0)/

√
2 are CP (even) and (odd) eigenstates, respectively. However, in the

decays D�0 → D0π0 and D0γ the final-state orbital angular momentum is one in both cases
and so the CP eigenstates decay according to,

D�0
1 → D0

1π
0, but D�0

1 → D0
2γ, etc. (74)

Hence, the D�0
1,2 states can only be correctly identified if the single γ can be distinguished

from the π0. As both the γ and π0 are quite soft this may be possible at an e+e− collider
but is problematic at a hadron collider.

Finally we consider specific B-decay modes that are suitable for method 1. Referring to
Tables 2-5 in Appendix A, we find the following candidates,

B+
u →

⎧⎨
⎩ D̄0π+ [IF , IIF ]

D0π+ [IID, IIID]
,

⎧⎨
⎩ D̄0K+ [IS, IIS ]

D0K+ [IIS, IIIS ]
,

B0
d →
⎧⎨
⎩ D̄0K�0 [IIS]

D0K�0 [IIS]
,

B0
s →
⎧⎨
⎩ D̄0K�0 [IIF ]

D0K�0 [IID]
,

B+
c →

⎧⎨
⎩ D̄0D+ [IIF , IIIF ]

D0D+ [ID, IID]
,

⎧⎨
⎩ D̄0D+

s [IIS , IIIS ]

D0D+
s [IS, IIS ]

.

(75)

The Roman numerals refer to the type of graph, as shown in Fig. 6 of Appendix A, and
the subscripts F , S, and D refer to CKM-favored (order λ2), -suppressed (order λ3), and
-doubly-suppressed (order λ4), respectively. In addition, b-baryons have suitable modes, such
as Λ0

b (udb) → ΛD0(D̄0), Λ+
b (udb) → Σ+D0(D̄0), Σ0

b (usb) → Ξ0D0(D̄0), etc. [57], which we
will not discuss further.

Among the candidate B-meson decays, only B0
d → D0(D̄0)K�0 is ideally suited for

method 1, as only one graph contributes to each decay and these are both singly CKM-
suppressed type-II (color-suppressed) spectator graphs. These decays have not yet been
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observed, but should have branching ratios of order 10−5. If only about 1% of the decays are
useful for the D0

1,2 analysis, the effective branching ratio is about 10−7. So at least 109 B’s
must be produced to carry out method 1. Some advantage is gained by considering several
channels, but since the strong phase difference varies from channel to channel, there must
be enough events in each channel to carry out the analysis separately before results for φub

can be combined. Hence, method 1 may be out of range of e+e− B factories with luminosity
of 3 × 1033 cm−2sec−1, even though the method is well-suited in principle to them.

The other five candidate decay pairs listed above all suffer from the rate for D0X being
at least an order of magnitude less than that for D̄0X (or vice versa), so the interference
term in D0

1,2X is quite small. However, the branching fraction for B+ → D0K+ is likely
to be very similar to that for B0

d → D0K�0. Since the statistical accuracy of method 1 is
largely set by the number of events of whichever of D0X or D̄0X has the lower branch, we
conclude that B+ → D0(D̄0)K+ is about as useful as B0

d → D0(D̄0)K�0.
If Bc mesons were produced as copiously as B+ and B0

d then the decay pair B+
c →

D0(D̄0)D+
s would be also be useful. However, Bc production is likely to be suppressed at

both e+e− and hadron colliders.

2.5 Method 2: Neutral B-Meson Decays to f and f̄ where f 
= f̄

In the second method the needed interference arises from mixing of a B0 and B̄0. The
analysis is more straightforward if the final state f is not self conjugate (f 
= f̄), but then
both the B0 and B̄0 must decay to both f and f̄ .

As for decay pairs suitable for method 1, one of the decay pairs (here called f̄) proceeds
via a b̄ → c̄ transition, and the other (f) via b̄→ ū. So we may write,

A(B0 → f̄) =
∣∣Af̄

∣∣ eiδf̄ ,

A(B0 → f) = |Af | e−iφubeiδf ,

A(B̄0 → f) =
∣∣Af̄

∣∣ eiδf̄ ,

A(B̄0 → f̄) = |Af | eiφubeiδf ,

(76)

using eq. (30). In writing this we must be able to assume that each amplitude is dominated
by a single weak phase.

Due to mixing, a particle that was created as a B0 (or B̄0) at t = 0 has evolved by time
t to the state we label as B0(t) (or B̄0(t)) according to,

B0(t) = e−iMte−t/2[cos(xt/2)|B0〉 + ie2iφM sin(xt/2)|B̄0〉],
B̄0(t) = e−iMte−t/2[ie−2iφM sin(xt/2)|B0〉 + cos(xt/2)|B̄0〉],

(77)

where throughout this paper we measure time in units of the relevant B lifetime, x = ΔM/Γ
is the mixing parameter, and the relative amount of |B0〉 and |B̄0〉 in the weak eigenstate
B0

S is given by a pure phase coming from the box diagram [11], where,

φM =

⎧⎨
⎩ φtd, for B0

d

φts ≈ 0, for B0
s

(78)
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The four time-dependent decay rates are then,

Γ(B0(t) → f̄) ∝ e−t[
∣∣Af̄

∣∣2 cos2(xt/2) + |Af |2 sin2(xt/2) − S sin(xt)],

Γ(B0(t) → f) ∝ e−t[|Af |2 cos2(xt/2) +
∣∣Af̄

∣∣2 sin2(xt/2) − S sin(xt)],

Γ(B̄0(t) → f) ∝ e−t[
∣∣Af̄

∣∣2 cos2(xt/2) + |Af |2 sin2(xt/2) + S sin(xt)],

Γ(B̄0(t) → f̄) ∝ e−t[|Af |2 cos2(xt/2) +
∣∣Af̄

∣∣2 sin2(xt/2) + S sin(xt)],

(79)

where δ = δf̄ − δf is the strong-interaction phase difference, and

S = |Af |
∣∣Af̄

∣∣ sin(2φM + φub − δ), and S = |Af |
∣∣Af̄

∣∣ sin(2φM + φub + δ). (80)

For eventual Fourier analysis it is preferable to write eqs. (79) as,

Γ(B0(t) → f̄) ∝ e−t[K + C cos(xt)− S sin(xt)],

Γ(B0(t) → f) ∝ e−t[K −C cos(xt) − S sin(xt)],

Γ(B̄0(t) → f) ∝ e−t[K + C cos(xt) + S sin(xt)],

Γ(B̄0(t) → f̄) ∝ e−t[K −C cos(xt) + S sin(xt)],

(81)

where,

K = (
∣∣Af̄

∣∣2 + |Af |2)/2, and C = (
∣∣Af̄

∣∣2 − |Af |2)/2. (82)

From measurement of these four time-dependent decay rates one deduces the four quan-
tities |Af |,

∣∣Af̄

∣∣, sin(2φM + φub + δ), and sin(2φM + φub − δ). Thus, we can measure
|π/2 − 2φM − φub ± δ|, and thereby determine 2φM + φub up to a fourfold ambiguity,

2φM + φub =
π ± |π/2 − 2φM − φub + δ| ± |π/2 − 2φM − φub ± δ|

2
. (83)

As for method 1, the use of four rate measurements permits the weak phase 2φM + φub to
be extracted even when the strong phase difference δ vanishes.

To carry out the above analysis we must know for each decay whether the B was created
as a B0 or a B̄0. The decays are not self tagging since both B0 and B̄0 can decay to both
f and f̄ , so in method 2 (as well as methods 3-6) one must tag the particle/antiparticle
character of the second B in the event. As that B may also be subject to mixing, a dilution
of the statistical power of the method results. In particular, it is well-known that at an e+e−

collider when the B-B̄ pair is produced in a C-odd state the interesting terms in sin(xt) in
eqs. (83) cannot be measured unless the B’s have relativistic velocity in the lab frame. This
“penalty” due to mixing can only be overcome by use of an asymmetric e+e− collider if the
center-of-mass energy is that of the Υ(4S).

From Tables 3 and 4 of Appendix A we find that there are 4 candidate decays pairs for
implementing method 2,

B0
d →
⎧⎨
⎩ D−π+ [IF , IVF ]

D+π− [ID, IVD]
,

⎧⎨
⎩ D−

s K
+ [IVF ]

D+
s K

− [IVD]
,

B0
s →
⎧⎨
⎩ D−

s K
+ [IS, IVS ]

D+
s K

− [IS, IVS ]
,

⎧⎨
⎩ D−π+ [IVS ]

D+π− [IVS ]
,

(84)
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In each example the lower decay depends on the weak phase −φub. The type-IV W -exchange
graphs (Fig. 6) may well be highly suppressed compared to the type-I spectator graphs.
Thus of the four candidates, only B0

s → D±
s K

∓ is likely to have reasonably large (∼ 10−4)
branching ratios for both channels. This renders method 2 largely unsuitable for an e+e−

collider, where production of Bs mesons will be low. At a hadron collider where only all-
charged daughters are used in reconstructing the Bs about 5-10% of the Ds decays will be
useful. Accounting for dilutions due to mixing of the second B at a hadron collider, some
108-109 Bs are needed to implement method 2.

If method 2 is used for the decays B0
s → D±

s K
∓ the weak phase that is measured in just

φub, since the mixing phase φM vanishes for B0
s .

2.6 Method 3: Neutral B-Meson Decays to D0X, D̄0X, and D0
1,2X

where X = X̄

Aspects of methods 1 and 2 are combined when a neutral B-meson decays to final state D0X
where X is self conjugate (X = X̄). Now, interference arises both from mixing and from the
use of D0

1,2 channels.
Following eqs. (67-69) and (76), we write the eight related decay amplitudes as,

A(B0 → D̄0X) =
∣∣Af̄

∣∣ eiδf̄ ,

A(B0 → D0X) = |Af | e−iφubeiδf ,

A(B̄0 → D0X) =
∣∣Af̄

∣∣ eiδf̄ ,

A(B̄0 → D̄0X) = |Af | eiφubeiδf ,

A(B0 → D0
1,2X) = (|Af | e−iφubeiδf ± ∣∣Af̄

∣∣ eiδf̄ )/
√

2 ≡ A1,2,

A(B̄0 → D0
1,2X) = (

∣∣Af̄

∣∣ eiδf̄ ± |Af | eiφubeiδf )/
√

2 ≡ Ā1,2.

(85)

Because both D0X and D̄0X can be reached from both B0 and B̄0, mixing must always be
taken into account. In addition to the four time-dependent decay rates given in eq. (81),
there are four more involving D0

1,2 obtained by combining eqs. (77) and (85),

Γ(B0(t) → D0
1,2X) ∝ e−t[|A1,2|2 cos2(xt/2) +

∣∣Ā1,2

∣∣2 sin2(xt/2) − S1,2 sin(xt)],

= e−t[K1,2 − C1,2 cos(xt)− S1,2 sin(xt)],

Γ(B̄0(t) → D0
1,2X) ∝ e−t[

∣∣Ā1,2

∣∣2 cos2(xt/2) + |A1,2|2 sin2(xt/2) + S1,2 sin(xt)],

= e−t[K1,2 + C1,2 cos(xt) + S1,2 sin(xt)],

(86)
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where

|A1,2|2 = (
∣∣Af̄

∣∣2 + |Af |2)/2 ± ∣∣Af̄

∣∣ |Af | cos(φub + δ),∣∣Ā1,2

∣∣2 = (
∣∣Af̄

∣∣2 + |Af |2)/2 ± ∣∣Af̄

∣∣ |Af | cos(φub − δ),

K1,2 = (
∣∣Af̄

∣∣2 + |Af |2)/2 ± ∣∣Af̄

∣∣ |Af | cosφub cos δ,

C1,2 = ± ∣∣Af̄

∣∣ |Af | sin φub sin δ,

S1,2 = 2 |Af |
∣∣Af̄

∣∣ sin(2φM + φub) cos δ ± |Af |2 sin 2(φM + φub) ±
∣∣Af̄

∣∣2 sin 2φM ,

(87)

and δ = δf̄ − δf is the strong-interaction phase difference.
From analysis of the four time-dependent rates (81) we deduce |Af |,

∣∣Af̄

∣∣, sin(2φM +
φub +δ) and sin(2φM +φub−δ). Then, from the coefficientsK1,2 and C1,2 of eqs. (86) we also
extract cosφub cos δ and sinφub sin δ. Finally, from the coefficient of sin(xt) we can extract
sin(2φM + φub) cos δ, sin 2(φM + φub) and sin 2φM .

Thus method 3 leads to the simultaneous measurement of φM , φub, φM+φub and 2φM+φub.
In case of B0

d mesons for which φM = φtd (see eq. (78)) φtd and φub and φtd+φub are measured
at once. It is remarkable that all three of the phase angles of the unitarity triangle can be
extracted from the analysis of a single family of B0

d-decays.
From Tables 3 and 4 of Appendix A we find that there are six candidate decays pairs for

implementing method 3,

B0
d →
⎧⎨
⎩ D̄0K0

S,L [IIS ]

D0K0
S,L [IIS ]

,

⎧⎨
⎩ D̄0ρ0 [IIF , IVF ]

D0ρ0 [IID, IVD]
,

⎧⎨
⎩ D̄0J/ψ [IVF ]

D0J/ψ [IVD]
,

B0
s →
⎧⎨
⎩ D̄0φ [IIS ]

D0φ [IIS ]
,

⎧⎨
⎩ D̄0K0

S,L [IIF ]

D0K0
S,L [IID]

,

⎧⎨
⎩ D̄0J/ψ [IVS ]

D0J/ψ [IVS ]
.

(88)

In each example the lower decay depends on the weak phase −φub. The type-IV W -exchange
graphs (Fig. 6) may well be highly suppressed compared to the type-II spectator graphs,
although in view of the easy trigger for J/ψD these modes should be searched for. Among
the eight candidates, B0

d → DK0
S,L and B0

s → Dφ are the best in terms of size of the smaller
branching ratio of the pair, which should be of order 10−5. Since a very intricate time-
dependent analysis is required to extract the full information from method 3, the Bs decays,
for which the mixing parameter xs is 26, are likely to be less useful than the Bd decays.

At a hadron collider where only all-charged daughters are used in reconstructing the B0

about 1% of the D0 decays will be useful. Accounting for dilutions due to mixing of the
second B at a hadron collider, some 1010-1011 B’s are needed to implement method 3. At
an e+e− collider, results of comparable statistical precision can likely be had with one order
of magnitude less B’s, but still a rather large number.
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2.7 Method 4: Neutral B-Meson Decays to CP Eigenstates

The most well-known method for extracting CP -violating phases uses neutral B mesons that
decay to CP -eigenstates f . In this case,

|f̄ 〉 ≡ CP |f〉 = η|f〉 where η =

⎧⎨
⎩ +1 CP (even)

−1 CP (odd)
. (89)

The decay amplitude can be written,

A(B0 → f) = |A| e−iφDeiδ, (90)

where δ is a strong-interaction phase, and the weak-interaction phase φD depends on whether
the decay proceeds via a b̄ → c̄ or ū transition,

φD =

⎧⎨
⎩ φcb = 0, b → c

φub, b → u
. (91)

Following eq. (30) we can write the amplitude for the CP -conjugate process as

A(B̄0 → f̄ ) = ηA(B̄0 → f) = |A| eiφDeiδ, and hence A(B̄0 → f) = η |A| eiφDeiδ, (92)

using eq. (89). Combining eqs. (90-92) with (77), we arrive at the time-dependent decay
rates

Γ(B0(t) → f) ∝ |A|2 e−t[1 − η sin(xt) sin2(φM + φD)],

Γ(B̄0(t) → f) ∝ |A|2 e−t[1 + η sin(xt) sin 2(φM + φD)].
(93)

If, as we have assumed, only a single graph contributes to B0 → f , then there is only a single
strong-interaction phase δ in both this and the conjugate reaction B̄0 → f . This single phase
does not appear at all in the interference term in eq. (93).

Both φM and φD can take on two values depending on the decay considered, according
to eqs. (78) and (91), so there are four classes of phase angles explored by method 4 as listed
in Table 1. Classes 1, 2 and 3 provide measurements of φ1, φ2 and φ3, respectively, of the
unitarity test. Class-4 decays should show very little CP violation, but not necessarily zero,
as they depend on Vts which has a CP -violating phase at higher order (see eq. (21)). Any
difference in the size of the CP violation between class 1 and class 2, or between class 3 and
class 4 would indicate that the superweak model is not the source of that effect.

The class-1 decay B0
d → J/ψK0

S is particularly easy to trigger on and identify, and may
provide the first evidence for CP violation in the B system. The most prominent class-2 and
-3 decays, B0

d → π+π− and B0
s → ρ0K0

S , respectively, both have smaller branching ratios
and in particular it may prove elusive to measure φ3 with B0

s → ρ0K0
S .

Another potential difficulty is that with the exception of B0
d → J/ψK0

S , all other decays
to CP eigenstates have admixtures of penguin diagrams with different weak phases than the
dominant tree diagram [76]. Hence, it is useful to have other procedures than method 4 to
measure φ2 and φ3.
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Table 1: The 23 basic neutral-B decays to CP eigenstates. The graphs
associated with each decay mode are shown in fig. 6. The subscripts F , S, and
D refer to CKM-favored (amplitude ∝ λ2), -suppressed (∝ λ3), and -doubly-
suppressed (∝ λ4), respectively. The weak-interaction phase φM +φD is shown
in parentheses after each graph type, where φM is the phase due to mixing and
φD is the phase due to b̄-quark decay. Penguin graphs (V-VII) are included
in classes 1-4 if they lead to the same final state as the nominal graphs for
that class, even though their topology is different. Classes 1a and 4a are pure
penguin graphs. Within each class the modes are ranked roughly in order of
decreasing branching ratio. A final-state π0 could be replaced by an η, ρ0, ω,
etc., and a J/ψ could be replaced by an ηc, χ, ψ′, etc., but final states with
two spin-1 particles must be analyzed according to method 6.

Class B0 b̄ → q Modes Graph(φM + φD)

1 B0
d b̄ → c̄ J/ψK0

S,L IIF (φtd), VIF(φtd)
D+D− IS(φtd), IVS(φtd), VS, VIIS

J/ψπ0 IIS(φtd), VIS

D+
s D

−
s IVS(φtd), VS

φK0
S,L VIF (φtd), VIIF (φtd)

2 B0
d b̄→ ū π+π− IS(φtd + φub), IVS(φtd + φub), VS, VIIS

π0π0 IIS(φtd + φub), IVS(φtd + φub), VS, VIS, VIIS

ρ0K0
S,L IID(φtd + φub), VIF(φtd), VIIF(φtd)

D0D̄0 IVS(φtd + φub), VS

K+K− IVS(φtd + φub), VS

3 B0
s b̄→ ū ρ0K0

S,L IIS(φub), VIS(φtd), VIIS(φtd)
K+K− ID(φub), IVD(φub), VF , VIIF

φπ0 IID(φub), VIF

π+π− IVDS(φub), VF ,
π0π0 IVDS(φub), VF ,

4 B0
s b̄ → c̄ D+

s D
−
s IF , IVF , VF , VIIF

J/ψK0
S,L IIS, VIS(φtd)

D0D̄0 IVF , IVD(φub), VF , VS

D+D− IVF , VF

K0K̄0 VF , VIIF

1a B0
s b̄ → s̄ φK0

S,L VIS(φtd), VIIS(φtd)

4a B0
d b̄→ ū φπ0 VIS

K0K̄0 VS, VIIS
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2.8 Method 5: B Decays to Sets of Final States Related by Isospin

In Table 1 we see that the decay B0
d → π+π− that can be used to determine φ2 has contribu-

tions both from spectator diagrams and penguin diagrams. However, the penguin diagrams
have no weak phase [76] in this case, and to the extent that they are significant, the mea-
surement of φ2 is compromised.

By measurement of the related decays B+
u → π+π0, B0

d → π+π−, π0π0, the weak phase
φ2 can be isolated from the strong phase of the penguin diagram (which latter phase is not
determined). The separation is aided by the fact that the spin-0 ππ final states can only be
in isospin I = 0 or 2 states due to Bose statistics, and by the result that the penguin graphs
can only lead to the I = 0 states [77].

The exchange-symmetric ππ isospin states of interest are,√
1
2
(|π+π0〉 + |π0π+〉) = |2, 1〉,√

1
2
(|π+π−〉 + |π−π+〉) =

√
1
3
|2, 0〉 +

√
2
3
|0, 0〉,

|π0π0〉 =
√

2
3
|2, 0〉 −

√
1
3
|0, 0〉,√

1
2
(|π−π0〉 + |π0π−〉) = |2,−1〉,

(94)

via the relevant Clebsch-Gordon coefficients. The decays of a B0
d = |1

2
,−1

2
〉 or B+

u = |1
2
, 1

2
〉

to these states involve ΔI3 = 1
2

which can occur via either ΔI = 1
2

or 3
2

transitions. We use
the “spurion” notation to write the weak Hamiltonian for these transitions as,

Hweak = H1/2|12 , 1
2〉 +H3/2|32 , 1

2〉. (95)

Then the ππ isospin states obtained in the B decays are,

H1/2|12 , 1
2
〉|B0

d〉 =
√

1
2
H1/2|1, 0〉 +

√
1
2
H1/2|0, 0〉,

H3/2|32 , 1
2
〉|B0

d〉 =
√

1
2
H3/2|2, 0〉 +

√
1
2
H3/2|0, 0〉,

H1/2|12 , 1
2
〉|B+

u 〉 = H1/2|1, 1〉,
H3/2|32 , 1

2
〉|B+

u 〉 =
√

3
4
H3/2|2, 1〉 −

√
1
4
H3/2|1, 1〉.

(96)

The transition amplitudes are then,

A(B0
d → π+π−) ≡ A+− =

√
1
6
〈ππ, I = 2|H3/2|B〉+

√
1
3
〈ππ, I = 0|H1/2|B〉,

A(B0
d → π0π0) ≡ A00 =

√
1
3
〈ππ, I = 2|H3/2|B〉 −

√
1
6
〈ππ, I = 0|H1/2|B〉,

A(B+
u → π+π0) ≡ A+0 =

√
3
4
〈ππ, I = 2|H3/2|B〉.

(97)

Following [63], we define,

A2 ≡
√

1
12
〈ππ, I = 2|H3/2|B〉, and A2 ≡ −

√
1
6
〈ππ, I = 0|H1/2|B〉, (98)
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so we can write the three B-decay amplitudes (and the corresponding three B̄ amplitudes)
as,

A+0 = 3A2, Ā−0 = 3Ā2,

A+− =
√

2(A2 − A0), Ā+− =
√

2(Ā2 − Ā0),

A00 = 2A2 + A0, Ā00 = 2Ā2 + Ā0.

(99)

Thus the six decay amplitudes are related by the two constraints,√
1
2
A+− + A00 = A+0,

√
1
2
Ā+− + Ā00 = Ā−0. (100)

As isospin amplitudes A2 and Ā2 contain only spectator graphs their phase structure can
be written,

A2 = |A2| eiφ2 = |A2| e−iφubeiδ2, Ā2 = |A2| eiφ2 = |A2| eiφubeiδ2, (101)

noting that the spectator graphs for A2 involve a b̄ → ū transition, and defining δ2 as the
strong-interaction phase of the isospin-2 spectator graph. The amplitudes A0 (later written

|A0| eiφ0) and Ā0 (=
∣∣Ā0

∣∣ eiφ0) contain both spectator and penguin graphs, but it will not be
possible to separate these amplitudes in this analysis, so we do not write the equivalent of
eq. (101) for them.

The decay rates are,

Γ(B+ → π+π0) = Γ(B− → π−π0) ∝ |A2|2 ,
Γ(B0(t) → π+π−) ∝ e−t[K+− − C+− cos(xt) − S+− sin(xt)],

Γ(B̄0(t) → π+π−) ∝ e−t[K+− + C+− cos(xt) + S+− sin(xt)],

Γ(B0(t) → π0π0) ∝ e−t[K00 − C00 cos(xt)− S00 sin(xt)],

Γ(B̄0(t) → π0π0) ∝ e−t[K00 + C00 cos(xt) + S00 sin(xt)],

(102)

using eq. (77) and defining,

K+− = (
∣∣Ā+−∣∣2 + |A+−|2)/2,

C+− = (
∣∣Ā+−∣∣2 − |A+−|2)/2,

S+− = Im(A∗+−e2iφtdĀ+−)

= 2 |A2|2 Im

[
e2i(φtd+φub)

(
1 − |A0|

|A2|e
i(φ2−φ0)

)(
1 − |Ā0|

|A2| e
−i(φ2−φ0)

)]
,

K00 = (
∣∣Ā00
∣∣2 + |A00|2)/2,

C00 = (
∣∣Ā00
∣∣2 − |A00|2)/2,

S00 = Im(A∗00e2iφtdĀ00)

= 4 |A2|2 Im

[
e2i(φtd+φub)

(
1 + 1

2
|A0|
|A2|e

i(φ2−φ0)
)(

1 + 1
2

|Ā0|
|A2| e

−i(φ2−φ0)

)]
,

(103)
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where we have used eqs. (99) in obtaining the second forms for the coefficients S.
Assuming the Fourier analysis of the time-dependent neutral B-decays rates (102) can

be performed, the coefficients K and C determine the magnitudes |A+−|, ∣∣Ā+−∣∣, |A00| and∣∣Ā00
∣∣. From Γ(B± → π±π0) we know |A+0| =

∣∣Ā−0
∣∣ = |A2|. Thus, the magnitudes of all

six quantities in the constraint equations (100) are known. Interpreting these constraints
as triangles in the complex plane as shown in Fig. 5, we can calculate the phase differences∣∣φ2 − φ+−∣∣, ∣∣φ2 − φ00

∣∣, ∣∣∣φ2 − φ
+−∣∣∣ and

∣∣∣φ2 − φ
00
∣∣∣ using the cosine law. Then, using the

second (or third) of eqs. (99) we can calculate |A0|, |φ2 − φ0|,
∣∣Ā0

∣∣ and
∣∣φ2 − φ0

∣∣.

Figure 5: The isospin decomposition (99) of theB → ππ decay amplitudes,
and the constraint relations (100) are shown as triangles on the complex plane.
An ambiguity remains as to the signs of the phase differences φ2−φ0 and φ2−φ0

as each triangle could be reflected about the A2 or Ā2 axis.

Thus, we know the magnitudes of all quantities appearing in the expressions for S+− and
S00, but there remains a fourfold ambiguity as to the phase, since only the absolute values
of φ2 − φ0 and φ2 − φ0 have been determined. Therefore, we can obtain two sets of four
solutions for sin 2(φtd + φub) = sin 2φ2. The true solution should be the only common value
in both sets. In principle, this method removes the uncertainty in the measurement of φ2

due to penguin graphs.
In practice, method 5 will be difficult to implement. The spectator graph for B0

d → π0π0 is
type-II, color-suppressed so the branching ratio may well be an order of magnitude smaller
than that for B0

d → π+π−. As method 5 depends heavily on reconstruction of B decays
with final-state π0’s for which no secondary-vertex information will be available, it may be
impossible to implement it at a hadron collider and it will be experimentally challenging at
an e+e− collider. Searches for other final states than ππ for use with the isospin method
have, however, not yielded any better candidate thus far [64, 65, 66].

2.9 Method 6: Angular Analysis of B Decays to Mixtures of CP

Eigenstates

When applying method 4 to neutral B-mesons decays to CP eigenstates we cannot immedi-
ately use self-conjugate final states that consist of a pair of vector mesons (such as D�D̄�),
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or of three or more mesons (such as J/ψK0
Sπ

0). Depending on whether the orbital angular
momentum is even or odd, the CP of the final state changes sign. If we know the fraction
p of decays to the CP -even final state we can write eq. (93) as,

Γ(B0(t) → f) ∝ |A|2 e−t[1 + (1 − 2p) sin(xt) sin 2(φM + φD)],

Γ(B̄0(t) → f) ∝ |A|2 e−t[1 − (1 − 2p) sin(xt) sin 2(φM + φD)],
(104)

and a measurement of sin 2(φM + φD) can be made subject to the dilution factor 1 − 2p.
The fraction p can in general be determined by analysis of the angular distribution of the
sequential decays of the final-state mesons, as discussed in detail in ref. [71] and references
therein. Such an angular analysis will require sizable event samples, perhaps an order of
magnitude larger than needed for method 4.

A simplified angular analysis will suffice if the final state consists of a vector meson
plus two spinless mesons. When all three mesons are self conjugate (such as J/ψK0

Sπ
0),

helicity-zero decays have definite CP and their abundance determined from a single angular
distribution [70]. When the spin-0 mesons come from the decay of a spin-1 meson, and the
two spin-1 mesons are each self conjugate (such as D�0ρ0 or J/ψφ), or the two vector mesons
are antiparticles (such as D�+D�−) the so-called transversity analysis can be used to extract
p [71].

Referring to Table 1, we see that the most interesting candidates for angular analysis are
the decays B0

d → J/ψK0
Sπ

0 and D�+D�− from class 1, B0
d → ρ+ρ− and ρ0ρ0 from class 2,

B0
s → ρ0K0

Sπ
0 from class 3, and B0

s → D�+
s D�−

s and J/ψφ from class 4. It is notable that
most of these decays require photon detection.

A Appendix : Nonleptonic Decay Modes of the B

Mesons

A survey of seven possible graphs describing B-meson decay indicates that the Bu will have
21 basic 2-body nonleptonic decays, the Bd will have 27, the Bs will have 29, and the Bc will
have 21 (see Tables 2-5). This contrasts with the case for the Ku (= K+) and Kd (= K0)
which each only have 2 such decays (not all distinct!). In the B system there are 24 basic
decays to CP eigenstates compared to the 2 in the K system. All 98 of the basic two-
body decays of the B-meson system have all-charged final states (at some price in secondary
branching fraction), while only 1 of the basic K decays is all charged.

We have not displayed the catalog of decays of the B+
c (= b̄c), in which the charm quark

decays before the b-quark, as is expected to happen in the majority of decays. Both the Bs

and the Bc will be better studied at a hadron collider than at a low-energy e+e− collider.
The Tables refer to seven kinds of graphs, two spectator, annihilation, exchange, pen-

guin/annihilation, and two penguin/spectator, as shown in Fig. 6. We can roughly estimate
that for spectator graphs I:

CKM-favored decays have amplitudes ∝ λ2, and branching fractions of 10−2-10−3;
CKM-suppressed decays have amplitudes ∝ λ3, and branching fractions of 3 × 10−4-

3 × 10−5;
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Figure 6: Seven graphs for the nonleptonic decays of B mesons.

CKM-doubly-suppressed decays have amplitudes ∝ λ4, and branching fractions of 10−5-
10−6.
Graphs II, III and IV are ‘color suppressed’ in that only 1/3 of the quark pairs created by
the W or gluons will have the proper color to match the other final-state quark pair, and so
the rates are typically suppressed by a factor of 1/10 compared to graph I at the same order
in λ.

The annihilation graph III and the exchange graph IV are controversial and both may
be heavily suppressed.

Graphs V-VII are ‘penguins,’ which have yet to be observed in the laboratory. This
suggests that they are suppressed by a factor of order 0.01 compared to graphs I and II
at the same order in λ. Graphs V and VII are color-suppressed compared to graph VI.
The weak phase of the amplitude for a penguin graph is φtd if the transition is b̄ → d̄
(CKM-suppressed), and 1 for b̄ → s̄, as discussed by London and Peccei [76].

The two-body final states listed in the Tables are representative of the particular qq̄/qq̄
combination for each entry. All final states could be augmented by n(π+π−), with possibly
larger branching fractions. Likewise, every spin-0 final-state particle could be replaced by
its spin-1 partner, and vice versa. Typically, the branch to the spin-1 meson will be 3 times
that to the spin-0 partner.

The secondary decays used in constructing the last column of the Tables are:

Decay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branching Ratio
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K0
S → π+π− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.69

ρ0 → π+π− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00
K�0 → K+π− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.67
φ→ K+K− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.50
D+ → K−π+π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.08
D0 → K−π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.04
D+

s → φπ+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03
D+

s → φπ+π+π− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.04
J/ψ → e+e− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.07

For completeness will list the basic two-body nonleptonic decays of the D+, D+
s , and D0

mesons in Tables 6-8.
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Table 2: The 21 basic 2-body nonleptonic decays of the B+
u (= b̄u). Figure 6 illustrates the

seven types of graphs. The subscripts F , S, and D to the type of graph in this and following
three tables refer to CKM-favored (ampli ∝ λ2), -suppressed (ampli ∝ λ3), and -doubly-
suppressed (ampli ∝ λ4), respectively. If the decay amplitude depends on a CP -violating
phase, the relevant phase of a CKM-matrix element is indicated in parentheses. The decay
modes are listed roughly in order of decreasing branching fraction.

Graph Final Final All-Charged
Quarks State Daughters

IF , IIF uc̄/ud̄ D̄0π+ K+π−π+

IF , IIID(φub), VIIF cs̄/uc̄ D+
s D̄

0 K+K−π+K+π−

IIF , VIF cc̄/us̄ J/ψK+ e+e−K+

IS cs̄/uū D+
s ρ

0 K+K−π+π+π−

IS, IIS uc̄/us̄ D̄0K+ K+π−K+

IS, IIIS(φub), VIIS(φtd) cd̄/uc̄ D+D̄0 K−π+π+K+π−

IS(φub), IIS(φub), IIIS(φub), VIF , VIIF uū/ud̄ ρ0π+ π+π−π+

IIS, VIS(φtd) cc̄/ud̄ J/ψπ+ e+e−π+

IIS(φub), IIIS(φub) cū/us̄ D0K+ K−π+K+

ID(φub), IID(φub), IIID(φub), VIF , VIIF uū/us̄ ρ0K+ π+π−K+

ID(φub), IIID(φub) cd̄/uū D+ρ0 K−π+π+π+π−

IID(φub), IIID(φub) cū/ud̄ D0π+ K−π+π+

IIIS(φub), VIIS(φtd) us̄/sd̄ K+K̄�0 K+K−π+

IIIS(φub) cd̄/ds̄ D+K�0 K−π+π+K+π−

IIIS(φub) cs̄/ss̄ D+
s φ K+K−π+K+K−

IIIS(φub) cc̄/cs̄ J/ψD+
s e+e−K+K−π+

IIID(φub), VIIF ds̄/ud̄ K�0π+ K+π−π+

IIID(φub), VIF , VIIF ss̄/us̄ φK+ K+K−K+

IIID(φub) cs̄/sd̄ D+
s K̄

�0 K+K−π+K−π+

IIID(φub) cc̄/cd̄ J/ψD+ e+e−K−π+π+

VIS(φtd) ss̄/ud̄ φπ+ K+K−π+
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Table 3: The 27 basic 2-body nonleptonic decays of the B0
d (= b̄d). The numbers in the “CP

Eigenstate” column refer to the classification described in sec. 2.3.1 regarding the relevant
CKM-phases governing the decay asymmetries. Graphs leading to CP -eigenstates includes
a phase factor in φtd due to mixing. However, in penguin graphs with b̄ → d̄ transitions to
CP eigenstates, the two phase factors in φtd cancel.

Graph Final Final CP All-Charged
Quarks State Eigenstate Daughters

IF , IVF dc̄/ud̄ D−π+ K+π−π−π+

IF , VIIF cs̄/dc̄ D+
s D

− K+K−π+K+π−π−

IIF , IVF uc̄/dd̄ D̄0ρ0 K+π−π+π−

IIF (φtd), VIF(φtd) cc̄/ds̄ J/ψK0
S 1 e+e−π+π−

IS dc̄/us̄ D−K+ K+π−π−K+

IS(φtd), IVS(φtd), VS, VIIS cd̄/dc̄ D+D− 1, 4 K−π+π+K+π−π−

IS(φtd + φub), IVS(φtd + φub), VS, VIIS ud̄/dū π+π− 2, 4 π+π−

IS(φub) cs̄/dū D+
s π

− K+K−π+π−

IIS uc̄/ds̄ D̄0K�0 K+π−K+π−

IIS(φub) cū/ds̄ D0K�0 K−π+K+π−

IIS(φtd), VIS cc̄/dd̄ J/ψρ0 1, 4 e+e−π+π−

IIS(φtd + φub), IVS(φtd + φub), VS, VIS, VIIS uū/dd̄ ρ0ρ0 2, 4 π+π−π+π−

ID(φub), VIIF us̄/dū K+π− K+π−

ID(φub), IVD(φub) cd̄/dū D+π− K−π+π+π−

IID(φtd + φub), VIF(φtd), VIIF(φtd) uū/ds̄ ρ0K0
S 2, 1 π+π−π+π−

IID(φub), IVD(φub) cū/dd̄ D0ρ0 K−π+π+π−

IVF sc̄/us̄ D−
s K

+ K+K−π−K+

IVF cc̄/uc̄ J/ψD̄0 e+e−K+π−

IVS(φtd + φub), VS cū/uc̄ D0D̄0 2, 4 K−π+K+π−

IVS(φtd), VS cs̄/sc̄ D+
s D

−
s 1, 4 K+K−π+K+K−π−

IVS(φtd + φub), VS us̄/sū K+K− 2, 4 K+K−

IVD(φub) cs̄/sū D+
s K

− K+K−π+K−

IVD(φub) cc̄/cū J/ψD0 e+e−K−π+

VIF (φtd), VIIF (φtd) ss̄/ds̄ φK0
S 1 K+K−π+π−

VS ss̄/ss̄ φφ 4 K+K−K+K−

VIS ss̄/dd̄ φρ0 4 K+K−π+π−

VS, VIIS sd̄/ds̄ K̄�0K�0 4 K−π+K+π−
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Table 4: The 29 basic 2-body nonleptonic decays of the B0
s (= b̄s).

Graph Final Final CP All-Charged
Quarks State Eigenstate Daughters

IF sc̄/ud̄ D−
s π

+ K+K−π−π+

IF , IVF , VF , VIIF cs̄/sc̄ D+
s D

−
s 4 K+K−π+K+K−π−

IIF uc̄/sd̄ D̄0K̄�0 K+π−K−π+

IIF , VIF cc̄/ss̄ J/ψφ 4 e+e−K+K−

IS, IVS sc̄/us̄ D−
s K

+ K+K−π−K+

IS, VIIS(φtd) sc̄/cd̄ D−
s D

+ K+K−π−K−π+π+

IS, VIIS(φtd) sū/ud̄ K−π+ K−π+

IS(φub), IVS(φub) cs̄/sū D+
s K

− K+K−π+K−

IIS uc̄/ss̄ D̄0φ K+π−K+K−

IIS(φub) cū/ss̄ D0φ K−π+K+K−

IIS, VIS(φtd) cc̄/sd̄ J/ψK0
S 4, 1 e+e−π+π−

IIS(φub), VIS(φtd), VIIS(φtd) uū/sd̄ ρ0K0
S 3, 1 π+π−π+π−

ID(φub), IVD(φub), VF , VIIF us̄/sū K+K− 3, 4 K+K−

ID(φub) cd̄/sū D+K− K−π+π+K−

IID(φub), VIF ss̄/uū φρ0 3, 4 K+K−π+π−

IID(φub) cū/sd̄ D0K̄�0 K−π+K−π+

IVF , IVD(φub) VF , VS cū/uc̄ D0D̄0 4, 3 K−π+K+π−

IVF , VF cd̄/dc̄ D+D− 4 K−π+π+K+π−π−

IVS dc̄/ud̄ D−π+ K+π−π−π+

IVS uc̄/uū D̄0ρ0 K+π−π+π−

IVS cc̄/uc̄ J/ψD̄0 e+e−K+π−

IVS(φub) cd̄/dū D+π− K−π+π+π−

IVS(φub) cū/uū D0ρ0 K−π+π+π−

IVS(φub) cc̄/cū J/ψD0 e+e−K−π+

IVD(φub), VF ud̄/dū π+π− 3, 4 π+π−

IVD(φub), VF uū/uū ρ0ρ0 3, 4 π+π−π+π−

VF , VIIF ss̄/ss̄ φφ 4 K+K−K+K−

VF , VIIF ds̄/sd̄ K�0K̄�0 4 K+π−K−π+−
VIS(φtd), VIIS(φtd) ss̄/sd̄ φK0

S 1 K+K−π+π−

34



Table 5: The 21 basic 2-body nonleptonic decays of the B+
c (= b̄c) in which the b̄-quark

decays before the c-quark.

Graph Final Final All-Charged
Quarks State Daughters

IF cc̄/ud̄ J/ψπ+ e+e−π+

IF , IIF , IIIF , VIF , VIIF cc̄/cs̄ J/ψD+
s e+e−K+K−π+

IIF , IIIF cd̄/uc̄ D+D̄0 K−π+π+K+π−

IS cc̄/us̄ J/ψK+ e+e−K+

IS, IIS, IIIS, VIS(φtd), VIIS(φtd) cc̄/cd̄ J/ψD+ e+e−K−π+π+

IS(φub), IIIS, VIIS(φtd) cū/ud̄ D0π+ K−π+π+

IS(φub), IIS(φub) cs̄/cū D+
s D

0 K+K−π+K−π+

IIS, IIIS cs̄/uc̄ D+
s D̄

0 K+π−K+K−π+

IIS(φub), IIIS, VIS(φtd), VIIS(φtd) cd̄/uū D+ρ0 π+π−K−π+π+

ID(φub), IIIF , VIIF cū/us̄ D0K+ K−π+K+

ID(φub), IID(φub) cd̄/cū D+D0 K−π+π+K−π+

IID(φub), VIF cs̄/uū D+
s ρ

0 K+K−π+π+π−

IIIF uū/ud̄ ρ0π+ π+π−π+

IIIF us̄/sd̄ K+K0
S K+π+π−

IIIF , VIIF cd̄/ds̄ D+K0
S K−π+π+π+π−

IIIF , VIF , VIIF cs̄/ss̄ D+
s φ K+K−π+K+K−

IIIS uū/us̄ ρ0K+ π+π−K+

IIIS ds̄/ud̄ K0
Sπ

+ π+π−π+

IIIS ss̄/us̄ φK+ K+K−K+

IIIS, VIIS(φtd) cs̄/sd̄ D+
s K

0
S K+K−π+π+π−

VIS(φtd) cd̄/ss̄ D+φ K−π+π+K+K−

Table 6: The 7 basic 2-body nonleptonic decays of the D+ (= cd̄). In this and the following
two tables penguin contributions are ignored.

Graph Final Final All-Charged
Quarks State Daughters

IF , IIF sd̄/ud̄ K̄�0π+ K−π+π+

IS, IIIS sd̄/us̄ K̄�0K+ K−π+K+

IS, IIS, IIIS dd̄/ud̄ ρ0π+ π+π−π+

IIS ss̄/ud̄ φπ+ K+K−π+

ID, IIID dd̄/us̄ ρ0K+ π+π−K+

IID, IIID ds̄/ud̄ K�0π+ K+π−π+

IIID ss̄/us̄ φK+ K+K−K+
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Table 7: The 6 basic 2-body nonleptonic decays of the D+
s (= cs̄).

Graph Final Final All-Charged
Quarks State Daughters

IF ss̄/ud̄ φπ+ K+K−π+

IIF , IIIF sd̄/us̄ K̄�0K+ K−π+K+

IS, IIS, IIIS ss̄/us̄ φK+ K+K−K+

IS, IIIS ds̄/ud̄ K�0π+ K+π−π+

IIS, IIIS dd̄/us̄ ρ0K+ π+π−K+

IIIF uū/ud̄ ρ0π+ π+π−π+

Table 8: The 11 basic 2-body nonleptonic decays of the D0 (= cū).

Graph Final Final All-Charged
Quarks State Daughters

IF , IVF sū/ud̄ K−π+ K−π+

IIF ss̄/uū φρ0 K+K−π+π−

IS, IVS ud̄/dū π+π− π+π−

IS, IVS us̄/sū K+K− K+K−

IIS, IVS sd̄/uū K̄�0ρ0 K−π+π+π−

IIS, IVS ds̄/uū K�0ρ0 K+π−π+π−

IIS, IVS dū/ud̄ ρ0ρ0 π+π−π+π−

ID, IVD us̄/dū K+π− K+π−

IVF ss̄/sd̄ φK̄�0 K+K−K−π+

IVS ds̄/sd̄ K�0K̄�0 K+π−K−π+

IVD ss̄/ds̄ φK�0 K+K−K+π−
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B Appendix: Maximum-Likelihood Analysis of CP -

Violating Asymmetries

As an illustration of some of the methods used in data analysis of experiments on CP
violation in the B-meson system, we deduce estimates of the statistical precision of analyses
of CP -violating asymmetries in the B0-B̄0 system via the maximum-likelihood method. In
the case of B0 decays to a CP eigenstate f the decay-time distributions have the form (45),

N±(t) =
N

2
e−t(1 ± A sinxt),

where N is the total number of decays to state f , A is the CP -violating parameter which is
a simple function of parameters of the CKM-matrix, x = ΔM/Γ is the mixing parameter,
and +(−) labels decays in which the B was born as a B0(B̄0). The estimated error on the
measurement of A can be written in terms of dilution factors D as

σA =
1

D
√
N
,

where
D =

x

1 + x2

for a time-integrated analysis;

D = Dt

√
2x2

1 + 4x2

for a time-dependent analysis;

D = Dt
x

1 + x2

√
1 + 2x4

1 + 4x2

for an analysis based only on the shape of the decay distribution; and

Dt = e−x2σ2
t /2

represents the effect of time resolution σt. Results are also presented for simultaneous analysis
of the CP -violating parameter A and the mixing parameter x, and for analysis of the mixing
parameter via decays to non-CP eigenstates. We end with an analysis of asymmetries
appropriate for study of CP violation at an e+e− collider.

B.1 Introduction

An optimum analysis of CP -violating asymmetries will be based on the maximum-likelihood
method. This should yield greater statistical precision than the methods presented in, say,
[78] and [79]. Here, we deduce the size of the error on various asymmetries via the likelihood
technique.

The principal example we consider is the case of neutral-B-meson decay to a CP eigen-
state f (called method 4 above). Here we suppose that we have a sample of N decays of
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either a B0 or B̄0 to state f in an experiment where there are equal numbers of B and B̄’s
produced. Then, following eq. (26) of [79] the time distribution of the observed decays can
be written,

N±(t) =
N

2
e−t(1 ± A sinxt), (105)

where throughout this Appendix time is measured in units of the B0 lifetime, and A is
a simple function of the parameters of the CKM-matrix (in the Standard Model). The
subscript + means that the decay occurred for a B that was a B0 at t = 0, while subscript −
means the B was a B̄0 at t = 0. These initial conditions must be determined by observation
of the second B in the event. For hadroproduction of B’s the effect of tagging the second
B factorizes from the analysis of the first and we do not consider the second B in this note
(except in sec. B.11 on e+e− colliders).

When A is nonzero there is CP violation, which manifests itself both in the difference
between the shape of distributions N+(t) and N−(t), and in the difference between the total
number of decays of each type:

N± ≡
∫ ∞

0

N±(t)dt =
N

2

(
1 ± A

x

1 + x2

)
. (106)

Eventually we will wish to consider the effect of the experimental resolution in time t on
the analysis. It is felicitous that this has only a minor effect on the formalism, so we prepare
the general case now. We designate σt as the r.m.s. time resolution, which means that the
observed decays distributions can be obtained by convolution [80]:

N±(t) =
N

2

∫ ∞

−∞

e−(t−t′)2/2σ2
t√

2πσt

dt′e−t′(1 ± A sinxt′)

=
N

2
eσ2

t /2e−t
(
1 ± Ae−x2σ2

t /2 sinx(t− σ2
t )
)

≈ N

2
e−t(1 ± Ae−x2σ2

t /2 sinxt), (107)

using integral 3.896.4 of ref. [81], and where the approximation holds well when σt � 1 (i.e.,
when the time resolution is much better than a lifetime), as is expected to be the case when
a silicon vertex detector is used.

Hence an analysis of distributions of the form,

N±(t) =
N

2
e−t(1 ± a sinxt) (108)

includes the effect of time resolution if we write,

a = ADt, with Dt ≡ e−x2σ2
t /2 (109)

where Dt is the “dilution factor”associated with finite time resolution.
We anticipate that an analysis of B0-B̄0 mixing will be similar to that of CP violation.

In the case of mixing, we take N+(t) to be the distribution of decays in which the B was
born as a B0 and decayed as a B0 (or was born as a B̄0 and decayed as a B̄0), while N−(t)
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is the distribution of decays in which the B was born as a B0 and decayed as a B̄0 (or was
born as a B̄0 and decayed as a B0. For this, we must be able to tell whether the particle was
a B0 or B̄0 at the time of decay, and so we cannot use the CP -eigenstates discussed above –
unless there is CP violation, for which case the statistical precision will typically be greatly
reduced, as discussed later.

The mixing time distributions have the form (recalling eq. (18)),

N±(t) = N |F±(t)|2 =
N

2
e−t(1 ± cosxt), (110)

leading to integrated numbers of events,

N± =
N

2

∫ ∞

0

e−t(1 ± cos xt) =
N

2

(
1 ± 1

1 + x2

)
. (111)

As before, the effect of a time resolution σt is readily included via convolution with a Gaus-
sian,

N±(t) =
N

2

∫ ∞

−∞

e−(t−t′)2/2σ2
t√

2πσt

dt′e−t′(1 ± cos xt′)

=
N

2
eσ2

t /2e−t
(
1 ± e−x2σ2

t /2 cosx(t− σ2
t )
)

≈ N

2
e−t(1 ± e−x2σ2

t /2 cos xt), (112)

Hence, a general mixing analysis will deal with distributions of form,

N±(t) =
N

2
e−t(1 ± a cosxt), (113)

which are closely related to those for CP violation given in eq. (108).

B.2 The Maximum-Likelihood Method

We recall the technique of data analysis via maximizing the likelihood by the example of N
data points xi sampled from a Gaussian distribution of mean a and variance σ,

P (x, a) =
e−(x−a)2/2σ2

√
2πσ

. (114)

The probability (or likelihood) of observing the data set {xi} is then,

L(a) =
N∏

i=1

P (xi, a). (115)

The idea of the maximum-likelihood method [82] is that L is approximately Gaussian in the
parameter a (whether or not P (x, a) is a Gaussian function of x), and hence the value of a
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that maximizes L(a) is the best estimate of a. Further, an excellent estimate of the error on
the measurement of a follows from the second derivative of lnL,

L =

N∏
i=1

e−(xi−a)2/2σ2

, (116)

lnL = −1

2

N∑
i=1

(xi − a)2

σ2
, (117)

d lnL
da

=
1

2

∑
i

xi − a

σ2
, (118)

d2 lnL
da2

= −
∑

i

1

σ2
= −N

σ2
. (119)

The maximum of L and for lnL occur at the same value of a, namely a =
∑

i xi/N as
expected. We identify,

− d2 lnL
da2

≡ 1

σ2
a

(120)

to find that σa = σ/
√
N as expected.

The method is readily extended to distributions that depend on multiple parameters.
We will later consider two parameters, say a and b, for which the likelihood function L(a, b)
formed from products of the probabilities P (xi, a, b) is expected to be Gaussian in a and b,

L(a, b) ∝ exp

{
−1

2

(
(a− atrue)

2

σ2
a

+
2(a− atrue)(b− btrue)

σ2
ab

+
(b− btrue)

2

2σ2
b

)}
. (121)

Hence, our estimates on the errors of the fitted values of a and b will be,

1

σ2
a

= −∂
2 lnL
∂a2

,
1

σ2
ab

= −∂
2 lnL
∂a∂b

,
1

σ2
b

= −∂
2 lnL
∂b2

. (122)

B.3 Analysis of a Simple Asymmetry

As a preliminary example of the maximum-likelihood method, we consider the case when
the data can take on only two values, labeled + and −, with probability,

P± =
1 ± a

2
, (123)

where a is the asymmetry parameter. For an experiment in which N+ and N− events are
observed, we form the likelihood function,

L =

(
1 + a

2

)N+
(

1 − a

2

)N−

. (124)
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The needed derivatives of lnL are,

lnL = N+ ln(1 + a) +N− ln(1 − a) + constant, (125)

d lnL
da

=
N+

1 + a
− N−

1 − a
, (126)

d2 lnL
da2

= − N+

(1 + a)2
− N−

(1 − a)2
. (127)

On setting the first derivative to zero, we find the usual expression for the asymmetry,

a =
N+ −N−
N+ +N−

. (128)

From this we express N+ and N− in terms of a and N = N+ +N− to evaluate the error on
the estimate of a as,

σa =

√
1 − a2

N
, (129)

using eq. (120). This agrees with the usual analysis based on the binomial distribution.

B.4 Time-Integrated Analysis of CP Violation

After these lengthy preliminaries, we turn to the analysis of CP -violating asymmetries,
beginning with the case where the data in integrated over time to yield the total numbers
of events given in eq. (106). In this case we study a simple asymmetry related by,

a = A
x

1 + x2
= ADt−int, (130)

where A is the CP -violating factor introduced in eq. (105), and we define,

Dt−int ≡ x

1 + x2
(131)

as the dilution factor due to time integration.
From eq. (129) we estimate the error on the measurement of A as,

σA =
σa

Dt−int
=

1

Dt−int

√
1 − A2D2

t−int

N
≈ 1

Dt−int

√
N

=
1 + x2

x
√
N
, (132)

where the approximation holds for small values of ADt−int.
The error on A is large for both large and small values of the mixing parameter x. The

minimum error as a function of x occurs if x = 1, for which σA = 2/
√
N . As x ≈ 1/

√
2 for

the B0
d-meson, a time-integrated analysis is rather effective in this case.
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B.5 Time-Dependent Analysis of CP Violation

We now determine what additional statistical power can be expected if we perform an analysis
of the time-dependent CP -violating decay distributions given in eq. (105). The likelihood
function is then,

L =
∏

i

e−ti(1 + A sin xti)
∏

j

e−tj(1 − A sinxtj), (133)

where subscript i labels events in which the B was born as a B0, and j labels events in
which the B was born as a B̄0. This form of the likelihood function is normalized to include
information both on the shape as well as the integral of the decay distributions.

According to eq. (120) we estimate the error on the measurement of A as,

1

σ2
A

= −d
2 lnL
dA2

=
∑

i

sin2 xti
(1 + A sinxti)2

+
∑

j

sin2 xtj
(1 −A sinxtj)2

. (134)

We estimate the sums by integrals according to,∑
i(j)

f(t) ≈ N

2

∫ ∞

0

dte−t(1 ± A sinxt)f(t), (135)

which leads to

1

σ2
A

= N

∫ ∞

0

dte−t sin2 xt

1 − A2 sin2 xt
≈ N

∫ ∞

0

dte−t sin2 xt =
2x2N

1 + 4x2
, (136)

where we ignore the time-varying term in the denominator for small A, and we have used
integral 3.895.1 of [81].

The full integral can be expressed as an infinite series on expanding the denominator in
a Taylor series. Keeping the first correction we find that,

1

σ2
A

≈ N

∫ ∞

0

dte−t sin2 xt(1 + A2 sin2 xt) =
2x2N

1 + 4x2

(
1 +

12A2x2

1 + 16x2

)
. (137)

Thus even for A = 1
3

the correction is at most 8% for any value of x.
We summarize the result (136) by writing,

σA ≈ 1

Dt−dep

√
N

with Dt−dep ≡
√

2x2

1 + 4x2
. (138)

The time-dependent dilution factor Dt−dep is larger than the time integrated factor (from
eq. (131)) for any value of x, and consequently the time-dependent analysis is always more
powerful statistically, as is to be expected.

In particular, the time-dependent analysis remains very powerful for large x, where a
time-integrated analysis yields no information. Indeed, for the time-dependent analysis,

σA ≈
√

2

N
for large x. (139)

This result also compares favorably with that reported in [78] and [79], where it was argued
that the effective dilution factor at large x is the average of sinxt over a half-cycle, namely
2/π, leading to σA ≈ π/2

√
N .
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B.6 Analysis of the Shape of the Time Distribution

M. Purohit has noted [83] that one could also perform an analysis of CP violation based
only on the shape of the decay distributions, ignoring the CP -violating asymmetry in the
integrated decay rates. Such an analysis would be the only one possible if the experiment
consisted of B’s born only as B0 (or only as B̄0).

The analysis is based on a likelihood function in which the decay distribution is nor-
malized to one (using the notation of eq. (133) and assuming equal numbers of B0 and B̄0

initially),

L =
∏

i

e−ti(1 + A sin xti)

1 + A x
1+x2

∏
j

e−tj(1 − A sinxtj)

1 − A x
1+x2

. (140)

Approximating the sums in the second derivative of lnL by the appropriate integrals, and
again neglecting a factor in A2 in the denominator, we have,

σA ≈ 1

Dshape

√
N

with Dshape ≡ x

1 + x2

√
1 + 2x4

1 + 4x2
. (141)

This result is, of course, poorer than the full time-dependent analysis (eq. (138)), but ap-
proaches the same accuracy for large x where only the shape matters. The shape analysis
is less powerful than the time-integrated analysis (eq. (132)) for x <

√
2, which includes the

case of B0
d-mesons.

The full time-dependent analysis of the previous section can be considered as the proper
combination of the time-integrated and the shape analyses. We readily verify the validity of
this by noting that,

1

σ2(time-dependent)
=

1

σ2(time-integrated)
+

1

σ2(shape)
, (142)

on comparing eqs. (132), (138), and (141).
As a numerical example, we consider the case of x = 1/

√
2, as holds approximately for

B0
d-mesons. We then have,

σ(time-dependent) =

√
3

N
=

1.73√
N
, σ(time-integrated) =

3√
2N

=
2.12√
N
,

σ(shape) =
3√
N
. (143)

It is remarkable that the time-dependent analysis is only 20% better than the time-integrated
analysis, while the former requires a costly silicon vertex detector.

B.7 The Effect of Time Resolution

In sec. B.1 we noted that the effect on the analysis of a time resolution σt is well approximated
by a dilution factor Dt = e−x2σ2

t /2 multiplying the CP -violating parameter A (see eqs. 107)-
(109)). Thus, the full-time-dependent analysis including time resolution will yield,

σA ≈ 1

Dt−depDt

√
N

=

√
1 + 4x2

2x2

ex2σ2
t /2

√
N

. (144)
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The effect of time resolution is only noticeable for xt >∼ 1, i.e., for large x, in which case,

σA ≈ ex2σ2
t /2

√
2

N
(large x). (145)

B.8 The Effect of a Cut at Short Times

M. Purohit has also pointed out [83] that in a realistic analysis based on decay times recon-
structed with a silicon vertex detector there will be a loss of events for times t less than some
small time t0, when the secondary vertex cannot be distinguished from the primary. In this
case the full time-dependent analysis proceeds as in sec. B.5, except that when estimating
sums by integrals we now use,∑

i(j)

f(t) ≈ N

2

∫ ∞

t0

dte−t(1 ± A sinxt)f(t), (146)

which leads to,

1

σ2
A

≈ N

∫ ∞

t0

dte−t sin2 xt =
e−t0N

2

(
1 +

2x sin 2xt0 − cos 2xt0
1 + 4x2

)
, (147)

using integral 2.663.1 of ref. [81]. As cτ ≈ 320 μm is the B-decay length, and the typical
resolution of silicon vertex detector is less than 20 μm, the condition t0 � 1 lifetime will
likely be satisfied. Then, for small x we can write,

1

σ2
A

≈ 2x2N

1 + 4x2

(
1 − t30

6
(1 + 4x2)

)
, (x� 1), (148)

which implies a very small correction. For large x we have,

1

σ2
A

≈ N

2
(1 − t0), (x� 1), (149)

which indicates that the correction for the cut at small times is small but perhaps notable
in this case.

B.9 Simultaneous Analysis of Parameters A and x

In all of the proceeding we have tacitly assumed that the value of the mixing parameter x is
known from other studies. This might not be so for B0

s mesons (at the time of the writing
(1992) of this Appendix).

Here we consider the time-dependent likelihood function (133) to estimate the errors on
measurement of both A and x according to the procedure of eq. (122). The effect of time
resolution is included as the dilution factorDt to parameterA. With the same approximation
of sums as integrals we find,

1

σ2
A

≈ 2x2e−x2σ2
tN

1 + 4x2
,

1

σ2
Ax

≈ Ae−x2σ2
tN

∫ ∞

0

dte−tt sinxt cos xt =
Ae−x2σ2

tN sin(2 tan−1 2x)

2(1 + 4x2)
,

1

σ2
x

≈ A2e−x2σ2
t

∫ ∞

0

dte−tt2 cos2 xt = A2e−x2σ2
tN

(
1 +

cos(3 tan−1 2x)

(1 + 4x2)3/2

)
,(150)
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using integrals 3.944.5 and 3.944.6 of [81].
These complicated results are perhaps best illustrated by considering the limits of small

and large x. For small x,

1

σ2
A

≈ 2x2N,
1

σ2
Ax

≈ 2AxN,
1

σ2
x

≈ 2A2N, (small x). (151)

The result for σx suggests that surprisingly good resolution in x can be obtained even when
the mixing oscillations are almost indiscernible. However, one must note the correlation of
the errors in x and A. More properly, we should report the error in x as the extreme value
of the 1-σ error ellipse (from eq. (121)),

A2

σ2
A

+
2Ax

σ2
Ax

+
x2

σ2
x

= 1. (152)

On requiring dx/dA = 0 in this, we find that the extreme value satisfies x = Aσ2
Ax/σ

2
A.

Inserting this into eq. (150) we must evaluate to sixth order to find,

σx(effective) ≈ 1

Ax2
√

112N
. (153)

So indeed for small x it is very difficult to determine x from studies of CP violation.
For large x eq. (150) becomes,

σA ≈ ex2σ2
t /2

√
2

N
, σAx → ∞, σx ≈ ex2σ2

t /2

A
√
N
, (large x). (154)

As xσt → 1, which may well hold for the B0
s -meson, the resolution in both A and x deteriorate

rapidly. It will be advantageous to have determined x in a separate measurement.

B.10 Analysis of B0-B̄0 Mixing

As it will be advantageous to deduce the mixing parameter x for the B0
s -meson from other

than CP -violation data, we consider now the statistical power of such an analysis. This is
based on eq. (110), or eq. (113) when time resolution is included. We form the likelihood
function,

L =
∏

i

e−ti(1 + a cos xti)
∏

j

e−tj(1 − a cosxtj), (155)

where a = e−x2σ2
t /2 is the effect of time resolution, and subscript i(j) refers to events where

the B is born as a B0 and decays as a B0(B̄0) (or where the B is born as a B̄0 and decays
as a B̄0(B0)).

Again approximating sums as integrals in the second derivative of lnL, we find that,

1

σ2
x

= N

∫ ∞

0

dte−tt2 = 2N, (156)

so that,

σx =
1√
2N

(157)
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if xt� 1 so that time resolution may be ignored.
When time resolution is significant we find,

1

σ2
x

= Ne−x2σ2
t

∫ ∞

0

dte−tt2 sin2 xt

1 − e−x2σ2
t cos2 xt

. (158)

This integral can be bounded by either considering the denominator to be 1 or sin2 xt, leading
to,

e−x2σ2
tN

(
1 − cos(3 tan−1 3x)

(1 + 4x2)3/2

)
≈ e−x2σ2

tN ≤ 1

σ2
x

≤ 2e−x2σ2
tN, (159)

using integral 3.944.6 of ref. [81], and the approximation holds for large x. This implies,

ex2σ2
t /2

√
2N

≤ σx ≤ ex2σ2
t /2

√
N

(160)

holds for any x and σt. Furthermore, when one is not restricted to the use of decay modes
leading to CP eigenstates the total number of events N may be much larger than in (154).

The effect of a cut at a small time t0 is readily considered, as in sec. B.8. For small x
the correction is fifth order in t0, while for large x it is third order. That is, the correction
is unimportant.

B.11 Analysis of CP Violation at an e+e− Collider

As discussed in sec. 2.3.4, when B’s are produced are part of a B0-B̄0 pair with definite
charge conjugation, the analysis of CP violation is more intricate. In particular, if the B’s
are produced in a C-odd state, as from Υ(4S) decay, then a time-integrated asymmetry
vanishes. However, good statistical power can be recovered by an analysis of time-resolved
decay distributions.

Both B’s of a B-B̄ pair must be observed in the CP analysis.17 We label B1 as the
(neutral) B that decays to the CP -eigenstate f , and B2 as the (charged or neutral) B that
decays to a state g 
= ḡ that permits us to determine whether B2 was a particle or antiparticle
at the moment of its decay. We can accumulate four time distributions, where one B decays
at time ta and the other at time tb with ta < tb,

I : ΓB1→f(tb)ΓB2→g(ta),

II : ΓB1→f(ta)ΓB2→g(tb),

III : ΓB1→f(tb)ΓB̄2→ḡ(ta),

IV : ΓB1→f(ta)ΓB̄2→ḡ(tb).

(161)

17If the B’s were produced at a symmetric e+e− collider, particularly at the Υ(4S) resonance where the
rate is high, the latter is produced at rest and both B’s would decay so close to their common production
point that they could not be separately identified. This difficulty is avoided by use of an asymmetric e+e−

collider (suggested by Oddone [75]) in which the center of mass of the e+e− collision is moving in the lab
frame, such that in general the B0 and B̄0 decay at locations sufficiently far apart that the two mesons can
be distinguished.
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The four distributions can be combined to form asymmetries in various ways: most
relevant for C-odd states is,

A1(ta, tb) ≡ II + III − I − IV

I + II + III + IV
, (162)

For C-even states we should consider,

A2(ta, tb) ≡ III + IV − I − II

I + II + III + IV
. (163)

The third variation of such asymmetries turns out to vanish and is not considered further,

A3(ta, tb) ≡ I + III − II − IV

I + II + III + IV
. (164)

For the case that mesons 1 and 2 are of the same type the four time distributions take
the form,

ΓI(ta, tb) ∝ e−(ta+tb)[1 ± A sinx(ta ± tb)],

ΓII(ta, tb) ∝ e−(ta+tb)[1 + A sinx(ta ± tb)],

ΓIII(ta, tb) ∝ e−(ta+tb)[1 ∓ A sinx(ta ± tb)],

ΓIV (ta, tb) ∝ e−(ta+tb)[1 − A sinx(ta ± tb)],

(165)

where A the CP -violating factor introduced in eq. (105), and the lower sign in the distribu-
tions holds for C-odd states |B1〉|B̄2〉 − |B̄1〉|B2〉.

Inserting the time distributions into the forms for the asymmetries we have,

A1 =

⎧⎨
⎩ A sinx(ta − tb), C(odd),

0, C(even),

A2 =

⎧⎨
⎩ 0, C(odd),

A sinx(ta + tb), C(even),

A3 = 0.

(166)

Clearly the asymmetry A1 will be useful at an e+e− collider where only C-odd states are
produced.

We first present a time-integrated analysis of these asymmetries, as discussed in [78].
Because of the time ordering in the definition of the distributions I-IV , the form of the
integrals is, ∫ ∞

0

dta

∫ ∞

ta

dtbΓI(ta, tb) =
1

2

(
1 ±A

x

1 + x2

)
, C(odd),

=
1

2

(
1 ± A

2x

(1 + x2)2

)
, C(even). (167)
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Thus we can write

A1 = D1,t−intA with D1,t−int =
x

1 + x2
C(odd), (168)

A2 = D2,t−intA with D2,t−int =
2x

(1 + x2)2
C(even). (169)

The above results can be improved upon with a maximum-likelihood analysis. We label
events in distributions I, II, III, and IV by indices i, j, k, and l, respectively, to form the
likelihood function,

L =
∏

i

ΓI(tai, tbi)
∏

j

ΓII(taj, tbj)
∏
k

ΓIII(tak, tbk)
∏

l

ΓIV (tal, tbl). (170)

We again approximate the sums in the second derivative of lnL via, sums as

∑
i

f(tai, tbi) → N

2

∫ ∞

0

dta

∫ ∞

ta

dtbΓI(ta, tb)f(ta, tb), etc., (171)

for a total sample of N events, noting eq. (167). Ignoring the term in the denominator in
A2 the integrals are similar to those encountered previously,

1

σ2
A

≈ 2N

∫ ∞

0

dtae
−ta

∫ ∞

ta

dtbe
−tb sin2 x(ta±tb) = 2N

∫ ∞

0

dtae
−2ta

∫ ∞

0

dse−s sin2 x(s+ta±ta),
(172)

where s = ta− tb. We characterize the results of the time-dependent analysis via the dilution
factors,

D1,t−dep =

√
2x2

1 + 4x2
, C(odd), and D2,t−dep =

√
8x4 + 6x2

1 + 4x2
, C(even). (173)

The dilution factors from the time-dependent maximum-likelihood analysis are larger than
those for the time-integrated analysis, and are the best possible. For large x, the time-
dependent analysis is particularly advantageous.

As was mentioned in sec. B.5, the dilution factors for the case of large asymmetry A can
be expressed as infinite series, the first terms of which are given in eq. (173). These series
have been given in notes by Frank Porter [84].

The effect of time resolution σt on the analysis can be calculated as in eq. (107), and can
be characterized (for small A) by the dilution factor,

Dt = e−x2σ2
t in the relation σA1,2 =

1

D1,2Dt

√
N
. (174)

As both B’s must be time-resolved in this analysis, the dilution factor Dt is the square of
that encountered in the single-B analysis. Viewed another way, since two times are measured
for each event at an e+e− collider the error on the sum or difference is

√
2σt. Using this in

eq. (109) we also arrive at eq. (174).
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