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1 Problem

In an induction linac [1] a toroidal solenoid magnet carries a time-dependent current I(t)
such that the induced electric field can transfer energy from the magnet to charged particles
that move along the axis of the toroid.1

Discuss the force and momentum balance in an idealized induction linac consisting of a
single magnet whose form is a torus of major radius a and minor radius b � a, and a single
electron of charge e that moves along the symmetry axis of the toroid. The current I is the
total current crossing any major circle on the surface of the torus.

While actual induction linacs contain high-permeability ferrites inside the toroid, whose
windings are made from shielded or unshielded conductors, it suffices here to consider a
nonconducting toroid (without ferrites) whose currents are due to electric charges fixed on
the rims of rotating disks. Neighboring disks have opposite charges and rotate in opposite
senses so that the net electric charge (and the net mechanical angular momentum) of the
toroid is zero. This configuration of a nonconducting toroid has no azimuthal current, in
contrast to a single-layer helical winding on the toroid which includes, in effect, a single
azimuthal current loop.

You may assume that (unlike the case of an induction linac) the velocity v of the moving
charge e of rest mass m is small compared to c, the speed of light in vacuum, and that

1Radiation by the time-dependent toroidal current can be neglected in this problem. For an example
where radiation by a toroid is emphasized, see [2].
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the time variation of the current in the toroid is slow enough that radiation and effects of
retardation can be ignored.

Provide an analysis in the rest frame of the moving charge as well as in the lab frame,
i.e., the rest frame of the toroid.

Cullwick [3]-[7] noted that this example is paradoxical because no force is exerted on the
moving charge when the current is constant in the toroid,2 but the moving charge exerts a
nonzero force on the toroid.3

2 Solution

The force Fe on the electric charge e due to the toroid causes a time rate of change of the
mechanical momentum Pe of the electron according to,

Fe =
dPe

dt
, (1)

and likewise the force FT on the toroid changes the mechanical momentum PT of the latter
according to,

FT =
dPT

dt
. (2)

The paradox (which dates back to Ampère) is that the magnetic interaction of a moving
charge and a current (as well as the magnetic interaction of two moving charges) does not in
general obey Newton’s third law, Fe �= −FT, so that the total mechanical momentum of the
system, Pmech = Pe + PT, is not constant in time, in apparent violation of Newton’s first
law for an isolated system.

The resolution of such paradoxes is that electromechanical systems in general possess an
additional momentum, PEM, associated with the interaction of the charges and currents with
the electromagnetic field such that the total momentum of an isolated system, Pe+PT+PEM

in the present example, is constant in time.
A further subtlety is that the sum Pmech + PEM, while constant, may appear to have a

nonzero value for an isolated system at rest. However, a “hidden” mechanical momentum
Ph can be identified that restores the total momentum of a system at rest to zero.

2.1 Analysis in the Lab Frame

2.1.1 The Electromagnetic Momentum

For systems in which effects of radiation and of retardation can be ignored, the electromag-
netic momentum can be calculated in various equivalent ways [12, 13] (in Gaussian units),

PEM =

∫
�A

c
dVol =

∫
E × B

4πc
dVol =

∫
ΦJ

c2
dVol, (3)

2Toroids with a simple helical winding have a net azimuthal current that leads to an external magnetic
field. The idealized toroidal field considered here could be better approximated by a double helical winding,
with one winding in the opposite sense to the other. See, for example, [2].

3This paradox was revived in [8]-[11] without reference to Cullwick.
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where � is the electric charge density, A is the magnetic vector potential (in the Coulomb
gauge where ∇ · A = 0), E is the electric field, Φ is the electric (scalar) potential, and J is
the electric current density. The first form is due to Faraday4 and Maxwell [18], the second
form is due to Poynting [19] and Abraham [20], and the third form was introduced by Furry
[21].

To calculate the electromagnetic momentum using the first form of eq. (3), we need the
vector potential AT of the toroid at the position of the charge e, but we do not need the
vector potential of the charge since the toroid is assumed to be electrically neutral. The
vector potential of the toroid obeys,

∇ × AT = BT = BT φ̂, (4)

where the magnetic field is BT = 2I/ac inside the toroid and zero outside, and φ̂ is a unit
vector in the azimuthal direction in a cylindrical coordinate system (ρ, φ, z). The toroid is
centered on the origin with the z-axis as its axis, as shown in the figure below (with radius
b exaggerated for clarity).

Cullwick noted [7] that the relation (4) has the same form as Maxwell’s equation for the
magnetic field due to a conducting wire that forms a (solid) torus of the same dimensions as
the (hollow) toroidal magnet when the wire carries azimuthal current density J = J φ̂,

∇ × Bloop =
4π

c
J =

4π

c
J φ̂. (5)

From the Biot-Savart law we know that the magnetic field along the axis of the current loop
is, for b � a,

Bloop(0, 0, z) ≈ 2π

c

πb2Ja2

(z2 + a2)3/2
ẑ . (6)

4Electromagnetic momentum can be identified with the electro-tonic state, first discussed by Faraday in
Art. 60 of [14]. Other mentions by Faraday of the electrotonic state include Art. 1661 of [15], Arts. 1729
and 1733 of [16], and Art. 3269 of [17].
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Comparing eqs. (4) and (5), we see that on replacing 4πJ in eq. (6) by 2I/a we obtain
the vector potential on the axis of the toroid when b � a,

AT(0, 0, z) ≈ πb2I

c

a

(z2 + a2)3/2
ẑ . (7)

Hence, the electromagnetic momentum of the system when charge e is at position z on
the axis of the toroid is,

PEM =
eAT(0, 0, z)

c
=

πb2Ie

c2

a

(z2 + a2)3/2
ẑ , (8)

which is independent of the velocity of the charge.
To calculate the electromagnetic momentum using the second form of eq. (3), we note

that the electric field at the toroid due to charge e has magnitude Ee = e/(z2 + a2) on
average, and that the z-component of Ee × BT (which is the only one remaining after the
integral over the toroid volume) is EeBT a/

√
z2 + a2. Hence,5

PEM =

∫
Ee ×BT

4πc
dVol ≈ e

z2 + a2

2I

ac

a√
z2 + a2

2πaπb2

4πc
ẑ =

πb2Ie

c2

a

(z2 + a2)3/2
ẑ . (9)

For completeness, we calculate the electromagnetic momentum using the third form of
eq. (3). We must keep the first correction to the spatial dependence of the electric po-
tential Φe of charge e over the toroid. Referring to the figure above, we see that r =√

R2 − 2bR cos(α + β) + b2 ≈ R[1 − b
R

cos(α + β)], sinβ = (a + b sinα)/r ≈ a/R, and

R =
√

z2 + a2. Only the z-component of the integral survives, so noting that Jz dVol →
−Ib sinα dα, we find,

PEM =

∫
ΦeJ

c2
dVol = −

∫ 2π

0

eI

c2r
b sin αdα ẑ

≈ − eIb

c2R

∫ 2π

0

sinα dα

(
1 +

b

R
(cos α cos β − sinα sinβ)

)
ẑ

=
πb2Ie

c2

a

(z2 + a2)3/2
ẑ . (10)

2.1.2 The Force on the Electric Charge

The force Fe on the electric charge is due to the electric field ET induced when the current in
the toroid changes. This field is conveniently calculated as the time derivative of the vector
potential (7). Thus,

Fe = eET = −e

c

∂AT

∂t
= −πb2İe

c2

a

(z2 + a2)3/2
ẑ , (11)

where İ = dI/dt, independent of the velocity of the charge. This force is nonzero only when
the current I in the toroid is changing.

5The “self momentum” of charge e associated with the cross product Ee × Be is, as usual, assumed to
be part of the mechanical momentum of the charge.
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2.1.3 The Force on the Toroid

The magnetic field Be at a distance r from the moving charge e is given by,

Be = e
v

c
× r̂

r2
=

evρ

cr3
φ̂, (12)

where v is its velocity, and ρ is distance from the observation point to the z-axis. This
magnetic field acts on the current I in the toroid to exert a force on the latter given by,

FT =

∮
I

c
dl × Be =

evI

c2

∮
dlρ

ρ

r3
ẑ (13)

Referring to the figure above, we see that dlρ = b cos αdα, ρ = a + b sin α ≈ a,

r =
√

R2 − 2bR cos(α + β) + b2 ≈ R[1 − b
R

cos(α + β)], cos β = (z − b cos α)/r ≈ z/R, and

R =
√

z2 + a2. Then,

FT ≈ evI

c2

∫ 2π

0

b cosα dα
a

R3

(
1 + 3

b

R
(cos α cosβ − sin α sinβ)

)
ẑ

=
3evIπb2

c2

az

(z2 + a2)5/2
ẑ = −ev

c

∂AT

∂z
, (14)

recalling eq. (7). This force is nonzero whenever the velocity v of the charge and the current
I in the toroid are nonzero.

2.1.4 Momentum Balance in the Lab Frame

The sum of the electromagnetic forces on the system is,

FT + Fe = −e

c

∂AT

∂t
− ev

c

∂AT

∂z
= −e

c

dAT

dt
, (15)

where d/dt is the convective derivative according to an observer on the charge e. The total
force is nonzero when the charge is moving and/or the current in the toroid is changing, in
apparent violation of Newton’s third law.

Consistency with Newton’s laws is restored if we recall eq. (8) for the electromagnetic
momentum of the system, so that we can write,

FT + Fe = −dPEM

dt
= −∂PEM

∂t
− v

∂PEM

∂z
, (16)

noting that the electromagnetic momentum varies both with the current in the toroid and
with the position z of charge e. Then, using eqs. (1) and (2) we see that the total momentum
of the system is constant in time,

dPT

dt
+

dPe

dt
+

dPEM

dt
=

dPtotal

dt
= 0. (17)
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2.1.5 “Hidden” Mechanical Momentum

While eq. (17) is a satisfactory representation of overall momentum balance, another aspect
of momentum in this example remains paradoxical. Namely, that if the velocity of charge e
is zero and toroid is at rest and contains a constant current, then the mechanical momenta
Pe and PT appear to be zero, yet the electromagnetic momentum PEM of eq. (8) is nonzero.
If the total momentum of an isolated system at rest is to be zero, in accordance with usual
expectations,6 there must be an additional, “hidden” momentum in the system that is equal
and opposite to the PEM.

Suppose that at some time, the current in the toroid drops from its steady initial value to
zero. Then, the electron is accelerated until its momentums equal the momentum (8 initially
stored in the static electromagnetic field. The final field momentum is zero (in the sense
that consider the momentum of the self field of the momentum electron to be part of its
“mechanical” momentum). The moving electron exerts a force on the toroid as long as its
current is still nonzero, such that the toroid receives a momentum “kick” equal and opposite
to the final momentum of the electron. That is, the final, total momentum of the system is
zero if the system is an isolated one.

The initial “hidden” mechanical momentum of the toroid has been transferred into the
“overt” momentum of the toroid as the current dropped to zero. Meanwhile, the initial field
momentum of the system was transferred into the “mechanical” momentum of the electron.

At all times, the total momentum of the system was zero (if the system was isolated).

The question of whether the electromagnetic momentum (3) itself corresponds to a kind
of “hidden” mechanical momentum was considered by Maxwell in Arts. 552 and 590 of [24],
who felt that the issue could not be settled at that time. Cullwick appears to have concluded
that the electromagnetic momentum associated with currents actually is the mechanical
momentum of the moving charges that comprise the currents. See chap. 18 of [7]. However,
this view does not ensure that the total momentum is zero for an isolated system at rest.7

Rather, we argue that if the charge e is brought sufficient slowly from “infinity” to rest
near the toroid, then the force (14) is always negligible, and negligible work is done on the
toroid during this process. The toroid remains at rest so long as the velocity of the charge e
is negligible. The total energy of a charge e′ of rest mass M that participates in the current
I of the toroid remains Mc2. When charge e′ is in the electric potential Φ = e/r of charge

6These expectations have been captured in the so-called center-of-energy theorem. See the Appendix of
[9], sec. 2 of [22], and sec. I of [23].

7Suppose that all the rest mass MT of the toroid is uniformly distributed on the rims of the disks of
radius b that rotate with angular velocity ω = I/Q, where Q is the total charge on these disks. If we
ignore the “hidden” mechanical momentum of eq. (19), the mechanical momentum of the toroid has only a
z-component given by,

PT =
∫ 2π

0

γ(φ)MTVz(φ) ẑ
dφ

2π
≈ MT

2π

∫ 2π

0

(
1 +

V 2
T + 2VT bω cosφ + b2ω2

2c2

)
(VT + bω cosφ) ẑ dφ

= MTVT

(
1 +

V 2
T + 2b2ω2

2c2

)
ẑ (18)

where VT = VT ẑ is the velocity of its center of mass. Then, if the toroid is at rest, VT = 0, its mechanical
momentum is also zero.
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e, its electrical potential energy is e′Φ, so the effective mass Meff of charge e′ is must be
lower than M , such that ΔMeff = Meff − M = −e′Φ/c2 according to Einstein’s relation for
the equivalence of mass and energy.8 Following initial discussion of this effect by Shockley
[25] and by Coleman and Van Vleck [22], a useful expression for the “hidden” mechanical
momentum Ph was given by Furry [21],

Ph = −
∫

ΦJ

c2
dVol. (19)

who noted that for a single charge e′, J dVol ↔ e′v, so that the “hidden” mechanical mo-
mentum associated with ΔMeff is the dPh = −(e′Φ/c2)v ↔ −(ΦJ/c2) dVol. Comparing with
eq. (3) we see that,

Ph = −PEM, (20)

(and not +PEM as argued by Cullwick [7]), so that the total momentum is indeed zero.9

2.2 Analysis in the Rest Frame of the Moving Charge

The transformation from the lab frame to the rest frame of charge e requires a boost by the
small velocity v, and so we expect the forces to be the same in both frames. However, in the
rest frame of the charge e that charge creates no magnetic field, so it appears that the force
on the toroid is zero in this frame, and hence Galilean invariance may be violated.

The resolution of this aspect of Cullwick’s paradox is to be found in the relativistic
transformation of charge and current density, which form a 4-vector, (c�,J). We consider
only the case that the velocity v of charge e is small compared to the speed of light, so that
γ = 1/

√
1 − v2/c2 ≈ 1.

In the lab frame there is no charge density � associated in the toroid, but in the rest
frame of charge e, whose lab velocity is v, the toroid has a nonzero charge density �′ given
by,

�′ = γ

(
� − J · v

c2

)
≈ −J · v

c2
= −vJz

c2
, (21)

where the ′ indicates quantities measured in the rest frame of the charge. The lab-frame
current consists of positive and negative charge densities that are equal and opposite but
which have different velocities. On transforming to a moving frame, the positive and negative
charge densities are no longer the same, and a net charge density (21) is observed. See sec. 86
of [31] for further discussion, including the example of a moving ring of current.

Since the current density J resides on the surface of the toroid, the volume charge density
(21) can be re-expressed as a surface-charge density σ′ given by,

σ′ ≈ vI

2πac2
sin α, (22)

8Here we adopt a model of the (electrically neutral) toroidal current as provided pairs of counter-rotating
disks with charges fixed to their rims. This avoids issues of shielding of the external electric field in metallic
conductors. Compare, for example, [26].

9The earliest example on record in which “hidden” momentum plays a role was given by J.J. Thomson
in 1904 on p. 348 of [27]. See also [28]. The present example seems to have been the second such. For a
general discussion of this topic by the author, see [29]. For a related example involving a magnetized toroid,
see [30].
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where α the angle shown in the figure above. The charge distribution (22) on the toroid is
positive for radial distances ρ greater than a and negative for ρ < a, so that total charge on
the toroid is zero in the rest frame (as well as in the lab frame).

Charge e exerts an electrostatic force on the charge distribution (22) on the toroid, and,
of course, charge e experiences an equal and opposite electrostatic force from the toroid (in
addition to the force if the current is changing).

For low-velocity transformations, the current density is unchanged since � = 0 in the lab
frame,

J′ = γ
(
J‖ − �v

)
+ J⊥ ≈ J. (23)

We now calculate the electromagnetic momentum P′
EM, and the forces F′

T on the toroid
and F′

e on the charge e in the rest frame of charge e.

2.2.1 The Electromagnetic Momentum

It is simplest to use the first form of eq. (3) to evaluate the electromagnetic momentum in
the rest frame. The only vector potential in this frame is that due to the current J′ ≈ J in
the toroid. Hence, the rest frame vector potential A′ obeys,

A′ = A′
T ≈ AT. (24)

The rest-frame electromagnetic momentum is therefore,10

P′
EM =

∫
�′A′

c
dVol′ ≈ eAT

c
= PEM, (25)

the same as in the lab frame. This result illustrates how electromagnetic momentum that is
tied to charges and currents does not transform like the space part of an energy-momentum
4-vector. See, for example, sec. 12.10 of [32] for additional comments.

We can, however, relate the electromagnetic momentum to the charge/current-density
4-vector, (Φ,A). In the lab frame the electric potential ΦT of the toroid vanishes, so the
transformation of the toroid’s lab-frame 4-vector (ΦT = 0,AT) to the rest frame of charge e
gives,

Φ′
T = γ

(
ΦT − v · AT

c

)
≈ −v

c
AT,z, A′

T = γ
(
AT,‖ − ΦT

v

c

)
+ AT,⊥ ≈ AT. (26)

2.2.2 The Force on the Toroid

The electric field E′
e ≈ Ee = er̂/r2 of charge e exerts a force F′

T on the charge distribution
σ′ on the toroid in the charge’s rest frame given by,11

F′
T =

∫
σ′E′

e dArea′ =

∫
σ′er̂

r2
dArea′

≈
∫ 2π

0

vI sinα

2πac2

e(sinβ ρ̂ − cosβẑ)

R2

(
1 + 2

b

R
cos(α + β)

)
2πab dα. (27)

10We do not include the term σ′A′
T/c in eq. (25) as this is suppressed a factor of c2.

11A briefer argument works backwards from the end of eq. (31).
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A subtlety compared to the calculations in sec. 2.1 is that the factor cosβ in the expression
for r̂ in eq. (27) must be expanded to the next order of accuracy. Indeed,

cos β =
z − b cosα

r
≈ z

r
≈ z

R

(
1 +

b

R
cos(α + β)

)
. (28)

Thus,

F′
T ≈ vIb

c2R3

∫ 2π

0

sinα e(a ρ̂ − z ẑ)

(
1 + 3

b

R
(cos α cosβ − sin α sinβ)

)
dα

≈ 3evIπb2

c2

az

(z2 + a2)5/2
ẑ = −ev

c

∂AT

∂z
= FT . (29)

2.2.3 The Force on the Electric Charge

The force F′
e on the electric charge in its rest frame is due to the electric field E′

T,ind induced
when the vector potential of the toroid changes at the position of the charge e, and also due
to the electric field E′

T,σ′ of the charge distribution (21) on the toroid. The vector potential
A′

T at the charge e is the same in the rest frame as in the lab frame, but in the rest frame
A′

T changes due to the velocity vT = −v of the toroid, as well as due to changes in the
current I . Hence, the force due to the changing vector potential of the toroid is,

F′
e,ind = eE′

T,ind = −e

c

∂A′
T

∂t
− e

c
(vT · ∇′

T)A′
T = −e

c

∂AT

∂t
− ev

c

∂AT

∂z
, (30)

noting that ∇′
T = −∇′

e (= −∇e) since the former refers to the coordinates of the (center of
the) toroid while the latter refers to the coordinates of the charge e. The electrostatic force
on charge e is equal and opposite to the electrostatic force (27) on the toroid,

F′
e,σ′ =

∫
eE′

T,σ′ dArea′ =

∫
e
−σ′r̂
r2

dArea′ = −F′
T =

ev

c

∂AT

∂z
= −e∇′

eΦ
′
T = −e∇eΦ

′
T(0, 0, z),

(31)
where the last form refers to the electric potential (26) of the toroid in the rest frame of
charge e.

The total force on charge e in its rest frame is,

F′
e = −e

c

∂AT

∂t
= Fe. (32)

2.2.4 Momentum Balance in the Rest Frame of Charge e

Once it is recognized that, in the rest frame of charge e, the moving toroid appears to have a
nonzero surface charge distribution, we find that the forces on the charge and on the toroid
are the same as in the lab frame. Also, the electromagnetic momentum is the same in both
frames (which shows that PEM does not behave exactly like an ordinary momentum in all
respects). Hence, the details of momentum balance are the same in both frames.

The sum of the forces on the charge e and on the toroid in the rest frame is,

F′
e + F′

T = −e

c

∂AT

∂t
= −e

c

dA′
T

dt
= −dP′

EM

dt
, (33)
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since the partial and total time derivatives of the vector potential at charge e are the same
in the charge’s rest frame. Relating the forces to the corresponding time rates of change of
momentum, we have,

dP′
e

dt
+

dP′
T

dt
+

dP′
EM

dt
=

dP′
total

dt
= 0. (34)

As expected, the total momentum is constant in the rest frame of the charge e.

2.2.5 “Hidden” Mechanical Momentum in the Rest Frame of Charge e

According to the prescription of Furry [21], the “hidden” mechanical momentum in the rest
frame of charge e can be calculated as,12

P′
h = −

∫
Φ′

eJ
′

c2
dVol′ = −P′

EM. (35)

We have seen in eq. (23) that J′ ≈ J. Similarly, the electric potential of charge e in its rest
frame is that same as that in the lab frame when v � c, so that Φ′

e ≈ Φe. Hence,

P′
h ≈ Ph. (36)

Thus, “hidden” mechanical momentum does not transform between moving frames like an
ordinary mechanical momentum. The “hidden” momentum, as does the electromagnetic mo-
mentum, transforms like the charge-current 4-vector rather than like an energy-momentum
4-vector. Hence, both of these concepts must be treated with care in problems involving
transformations between moving frames. See [33, 29] for additional commentary.

2.3 Energy Considerations

2.3.1 Energy Flow in an Induction Linac

In the lab frame the charge e is accelerated by the electric field ET that exists when the
current in the toroid is changing. The power P absorbed by the charge is,

P = Fe · v = evET(0, 0, z) = −ev

c

∂

∂t
AT(0, 0, z) = −evİπb2

c

a

(z2 + a2)3/2
. (37)

The flow of power from the toroid to the charge is described by the Poynting vector, or more
precisely, by the interaction part of the Poynting vector,

Sint =
c

4π
ET × Be +

c

4π
Ee × BT. (38)

It would be nice to have a plot of the field lines of the Poynting vector (38), which would
show them emanating from the toroid and converging on the charge e. Lacking such a plot,
we content ourselves with verification that the total Poynting flux across a small surface

12We neglect the contribution from Φ′
TJ′/c2 in eq. (35) as this is suppressed by two additional powers of

c.
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surrounding charge e, and also across the surface of the toroid, is equal to the power P of
eq. (37).

We first consider a small cylindrical surface of radius ρ and length 2l � ρ centered on
the charge e. The electric field due to the toroid is essentially uniform over this surface, so
ET ≈ ET(0, 0, z) ẑ, and the magnetic field Be of charge e is given by eq. (12). Outside the
toroid the magnetic field BT vanishes, so only the first term in eq. (38) contributes there.
We can neglect the Poynting flux on the ends of the small cylinder since ρ � l. Hence, the
inward Poynting flux over the surface of this cylinder is,

−
∮

Sint · dArea = − c

4π

∮
ET × Be · dArea ≈ − c

4π

∫ l

−l

ET ẑ × evρ

cr3
φ̂ · 2πρ dz ρ̂

≈ evETρ2

2

∫ l

−l

dz

(z2 + ρ2)3/2
= evET

l√
l2 + ρ2

→ evET = P, (39)

in the limit that the radius ρ of the cylinder goes to zero.
To evaluate the outward Poynting flux from the surface of the toroid we consider a

toroidal surface just outside the actual toroid, so that the second term of eq. (38) can again
be neglected. The electric field ET due to the changing current İ flows in loops of radius b
just outside the toroid. From Faraday’s law, the magnitude of the induced electric field at
the surface of the toroid is,

ET = −bḂφ

2c
= −bİ

ac
, (40)

recalling that Bφ = 2I/ac inside the toroid. The magnetic field of charge e at the toroid has
magnitude Be = eva/c(z2 +a2)3/2. The cross product ET×Be is directed along the outward
normal to the surface of the toroid. Hence, the total outward Poynting flux from the toroid
is,

∮
Sint · dArea =

c

4π
ET Be Area = − c

4π

bİ

ac

eva

c(z2 + a2)3/2
2πa 2πb

= −evİπb2

c

a

(z2 + a2)3/2
= P, (41)

which equals the power P , eq. (37), that is absorbed by the accelerating charge.

2.3.2 Energy Balance in the Lab Frame

There are several forms of energy stored in the system,

U = Ue + UT + Uint, (42)

where the energy,

Ue = γmc2 ≈ mc2 +
mv2

2
(43)

of the moving charge includes its electromagnetic self energy. The energy UT of the toroid
can be written as,

UT = UT,mech + UT,EM. (44)
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We suppose that all the rest mass MT of the toroid is uniformly distributed on the rims of
the disks of radius b that rotate with angular velocity ω = I/Q, where Q is the total charge
on these disks. Then, the mechanical energy of the toroid is,

UT,mech =

∫ 2π

0

γ(φ)MTc2 dφ

2π
≈ MTc2

2π

∫ 2π

0

(
1 +

V 2
T + 2VT bω cosφ + b2ω2

2c2

)
dφ

= MTc2 +
MT(V 2

T + b2ω2)

2
= MTc2 +

MT(V 2
T + b2I2/Q2)

2
, (45)

where VT = VT ẑ is the velocity of its center of mass. The electromagnetic energy stored in
the toroid is, neglecting the small electric field ET and the small magnetic field BT outside
the toroid,

UT,EM =

∫
E2

T + B2
T

8π
dVol ≈

∫
T

B2
T

8π
dVol ≈ (2I/ac)2

8π
2πab2 =

ab2I2

2c2
. (46)

The electromagnetic interaction energy of the magnetic fields of the charge and toroid is, in
the approximation mentioned above,

Uint =

∫
ET · Ee + BT · Be

4π
dVol ≈

∫
T

BT · Be

4π
dVol ≈ (2I/ac)

4π

eva

c(a2 + z2)3/2
2πab2 =

ab2Iev

c(a2 + z2)3/2
,

(47)
where z = ze − zT is the distance between the charge and the center of the toroid.

The time rate of change of the energy of the system is,

dU

dt
≈ mvv̇ + MTVTV̇T +

(
MTb2

Q2
+

ab2

2c2

)
Iİ +

ab2İev

c(a2 + z2)3/2
+

ab2Iev̇

c(a2 + z2)3/2

+
3ab2Ievz(v − VT )

c(a2 + z2)5/2
. (48)

For an induction linac, the toroid would be at rest in the laboratory (VT = 0 = V̇T) and an
external source would provide the power dU/dt that is transferred to the moving charge, as
well as providing for the changes in the various other forms of energy of the system.

We can also contemplate the idealized case of an isolated system with no external power
source. Then, the total energy U is constant in time. The first two terms of eq. (48) can be
written as Fev + FTVT, and then using eqs. (11) and (21) we have that,

0 ≈
(

MTb2

Q2
+

ab2

2c2

)
İ +

ab2ev̇

c(a2 + z2)3/2
+

3ab2ev2z

c(a2 + z2)5/2
, (49)

which relates the change in the current in the toroid to the change in the motion of the
charge, such that energy is conserved. The derivatives İ and v̇ cannot both be negligible in
an isolated system unless z is so large that the third term in eq. (49) is also negligible.

A Appendix: Circuit Version of Cullwick’s Paradox

A variant on Cullwick’s paradox can be given in circuit form [34]. Consider a toroidal solenoid
(1) and a simple LC circuit (2) in the form of a single-turn loop with a capacitor, as shown

12



in the figure below. The LC circuit does not link the toroid. As usual in circuit analysis, we
suppose that the frequency of the currents is low enough that they are spatially uniform in
both the toroid and the LC circuit (and currents on the capacitor plates are neglected).

The EMF E1 induced in the toroid by an oscillatory current I2 eiωt in the LC circuit is,

E1 =

∮
1

E1(I2) · dl1 = −1

c

d

dt

∮
1

A1(I2) · dl1 = − 1

c2

dI2

dt

∮
1

∫
2

dl2 · dl1
r2
12

≡ −iωM12I2, (50)

where the electrical field in/on the toroid, E = −∇V −∂A/∂ct, is entirely due to the vector
potential A (if we ignore the small fringe field of the capacitor, as always done in circuit
analysis), and the (retarded) vector potential is due only to the conduction current in the
LC circuit [35] (see also [2, 36]-[47]). That is, the integral

∫
2

is restricted to the conductor
of the LC circuit and does not include the “displacement current” in the gap between the
capacitor plates.13 Then, the mutual inductance M12 is given by,

M12 =
1

c2

∮
1

∫
2

dl2 · dl1
r2
12

. (51)

If circuit 2 were a closed loop then M12 = 0, but in the present case M12 is nonzero. Similarly,
the EMF E2 induced in the LC circuit by current I1 eiωt in the toroid is given by,

E2 =

∫
2

E2(I1) · dl2 = −1

c

d

dt

∫
2

A2(I1) · dl2 = − 1

c2

dI1

dt

∫
2

∮
1

dl1 · dl2
r2
21

≡ −iωM21I1, (52)

where again the integral
∫
2

is restricted to the conductor of the LC circuit. That is, the
E2 does not include a contribution from the gap between the capacitor plates because there
is no charge there for the electric field to act on (and E2 is unique only if the integral is
restricted to the physical conductor).14 The mutual inductance M21 is given by,

M21 =
1

c2

∫
2

∮
1

dl1 · dl2
r2
21

= M12, (53)

since r12 = r21.

13The unphysical result of [34] is based on the erroneous assumption that the “displacement current”
∂D/∂t is a source of the vector potential (and of EMF). This leads to the misunderstanding that M12 = 0
when the integral

∫
2

is taken to be over a closed loop so as to include the “displacement current”.
14Another form of the circuit paradox would result from accepting that M12 is nonzero but erroneously

supposing that the electric field in the gap of the capacitor contributes to the EMF induced in the LC circuit
by the toroid. Typical analyses of LC circuits make this assumption with little error because the length of
the gap between the capacitor plates is small compared to the circumference of the circuit. However, when
the second loop is a toroid that is not linked by the LC circuit, including the electric field in the gap in the
calculation of the EMF leads to the misunderstanding that M21 = 0.
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A.1 Energy Conservation

For completeness, we perform an energy analysis of the coupled loops 1 and 2, supposing
that they contain resistances R1 and R2 that dissipate energy. When the toroid is driven by
an AC voltage source V eiωt, the loop equation for the toroid is,

V = R1I1 + iωL1I1 + iωM12I2, (54)

where L1 is the self inductance of the toroid, and that for the LC circuit (which has no
voltage source) is,

0 = R2I1 + iωL2I2 − i

ωC2
I2 + iωM21I1. (55)

From eq. (55) we have that,

I2 = − iω2M21C2

ωR2C2 + i(ω2L2C2 − 1)
I1 = − iω2M21C2[ωR2C2 − i(ω2L2C2 − 1)]

ω2R2
2C

2
2 + (ω2L2C2 − 1)2

I1, (56)

and then eq. (54) tells us that,

V =

[
R1 + iωL1 +

ω3M12M21C2[ωR2C2 − i(ω2L2C2 − 1)]

ω2R2
2C

2
2 + (ω2L2C2 − 1)2

]
I1. (57)

The time-average power delivered by the voltage source is,

P =
1

2
Re(V I�

1) =
1

2

[
R1 +

ω4M12M21R2C
2
2

ω2R2
2C

2
2 + (ω2L2C2 − 1)2

]
|I1|2 , (58)

while the power consumed in the toroid is,

P1 =
1

2
R1 |I1|2 , (59)

and the power consumed in the LC circuit is,

P2 =
1

2
R2 |I2|2 =

1

2
R2

ω4M2
21C

2
2

ω2R2
2C

2
2 + (ω2L2C2 − 1)2

|I1|2 , (60)

recalling eq. (56). Thus, energy is conserved,

P = P1 + P2, (61)

since M21 = M12 according to eq. (53).
Clearly, if the voltage source were connected to the LC circuit, rather than to the toroid,

relation (61) would again hold.
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A.2 Beyond the Approximations of Circuit Analysis

The preceding circuit analysis makes various approximations that are not strictly correct.
The current in the circuits has been assumed to be spatially uniform, whereas there is a

nonuniform surface current on both sides of the plates of the capacitor [48].
The effect of the electric fringe field of the capacitor has been neglected.
The effect of the physical configuration of the voltage source on the electric and magnetic

fields has been neglected.
The effect of any measuring devices, used to probe the current in the circuits, has been

neglected.
The magnetic field outside the toroidal solenoid has been assumed to be zero in the

quasistatic approximation, whereas it is actually nonzero [2].
Radiation has been neglected.15

The toroid, the capacitor, and the wire loop of the LC circuit are made of rather good
conductors, at whose surface the tangential component of the electric field is negligible. That
is,

∫
E · dl is negligible for these good conductors, and is significantly nonzero only in the

voltage source and in the load resistor. So, the forms (50) and (52) for the EMFs are not
accurate (and the concept of mutual inductance is only approximate).

To deal with all of these effects a more sophisticated analysis is required, of the sort
made for antenna systems. There, systems with good conductors (with finite thicknesses)
and possible, compact load capacitors, inductors and resistors are analyzed via an integral
equation (due to Pocklington [50]) that incorporates the good-conductor boundary condition.
These calculations are better performed numerically than analytically.16 Energy conservation
is, of course, maintained throughout such analyses.

When dealing with pairs of antennas, one transmitting and one receiving, as in the
example of this Appendix, a reciprocity relation can be formulated (see, for example, [53])
between the drive voltages and driven currents when the roles of transmitter and receiver
are reversed. This is a generalization of the condition M12 = M21 on the mutual inductances
of circuit analysis.

Thus, there exists a powerful formalism to go beyond the approximations of circuit anal-
ysis, although this formalism does not lend itself to simple analytic results, and we content
ourselves with the circuit analysis given in the main part of this Appendix.
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