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1 Problem

Electromagnetic waves of frequency below a cutoff cannot propagate down a hollow wave-
guide. One view of why this is so has been given in sec. 24-8 of [1], where it is argued that
constructive interference between the physical source of the waves and the infinite set of
related image sources can only occur if the free-space wavelength is short enough. In this
problem, discuss the flow of energy (as described by the Poynting vector [2]) supposing that
source currents in the plane z = 0 launch fields according to the TE10 mode pattern of a
rectangular, vacuum waveguide of inner dimensions a in x and b in y.

2 Solution

The electromagnetic fields of the TE10 mode with angular frequency ω in a guide whose
interior is 0 < x < a and 0 < y < b can be deduced from a sinusoidal form for E =
Ey(x, z, t) ŷ that obeys the perfect-conductor boundary condition Ey(x = 0) = Ey(x = a) =
0. Then, the fields are given by the real parts of (see, for example, [3]),1

Ey = E0 sin
πx

a
ei(kgz−ωt), (3)

Bx =
i

ω

∂Ey

∂z
= −kg

ω
E0 sin

πx

a
ei(kgz−ωt), (4)

Bz = − i

ω

∂Ey

∂x
= − iπ

ωa
E0 cos

πx

a
ei(kgz−ωt), (5)

in SI units, and the guide wave number kg is given by,

kg =

√
ω2

c2
− π2

a2
= i

√
π2

a2
− ω2

c2
≡ iα, (6)

where c is the speed of light in vacuum, such that eqs. (3)-(5) satisfy the wave equation
∇2ψ = ∂2ψ/∂(ct)2.

1The TE10 fields (3)-(5) can also be thought of as the sum of a pair of free-space waves that zig-zag
down the guide at angle θ (see, for example, sec. 9.9 of [3]),

E = E+ + E− =
E0

2i

(
ei(k+·r−ωt) − ei(k−·r−ωt)

)
ŷ = E0 sin

(ω

c
cos θ x

)
ei(kgz−ωt) ŷ, (1)

B =
k+ × E+

ω
+

k− ×E−
ω

, k± = ±ω

c
cos θ x̂ +

ω

c
sin θ ẑ = ±ω

c
sin θ x̂ + kg ẑ. (2)

The requirement that Ey(x = a) = 0 implies that (ω/c) cos θ = π/a, so that kg = (ω/c) sin θ is given by
eq. (6).
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2.1 Above Cutoff

For frequencies ω > πc/a the guide wave number kg is real, and the fields (3)-(5) can be
written as,

Ey = E0 sin
πx

a
cos(kgz − ωt), (7)

Bx = −kg

ω
E0 sin

πx

a
cos(kgz − ωt), (8)

Bz =
π

ωa
E0 cos

πx

a
sin(kgz − ωt). (9)

The (instantaneous) Poynting vector in this case is,

S =
E × B

μ0

=
c

Z0
(EyBz x̂ − EyBx ẑ)

=
cE2

0

Z0

(
π

4ωa
sin

2πx

a
sin[2(kgz − ωt)] x̂ +

kg

ω
sin2 πx

a
cos2(kgz − ωt) ẑ

)
, (10)

where Z0 =
√
μ0/ε0 = 377 Ω, and ε0 and μ0 are the permittivity and the permeability of

the vacuum, respectively. The time-average Poynting vector is,

〈S〉 =
kg

ω

cE2
0

2Z0
sin2 πx

a
ẑ =

c

vp

E2
0

2Z0
sin2 πx

a
ẑ, (11)

corresponding to flow of energy down the guide with phase velocity,

vp =
ω

kg

=
c√

1 − (
πc
ωa

)2
> c, (12)

and with group velocity,

vg =
dω

dkg
= c

√
1 −

(πc
ωa

)2

=
c2

vp
< c. (13)

The Poynting vector (10) also describes a flow of energy in the x-direction that oscillates in
time, indicating a transverse rearrangement (separately for x greater and less than a/2) of
energy stored within the guide as this energy propagates down the guide. No energy flows
into or out of the guide walls in the limit that they are perfect conductors.

2.2 Below Cutoff

For frequencies ω < πc/a the guide wave number kg is imaginary, and the fields (3)-(5) can
be written in terms of the real parameter α (defined in eq. (6)) as,

Ey = E0 sin
πx

a
e−αz cosωt, (14)

Bx = −α
ω
E0 sin

πx

a
e−αz sinωt, (15)

Bz = − π

ωa
E0 cos

πx

a
e−αz sinωt. (16)
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The Poynting vector in this case is,

S =
cE2

0

2Z0

(
− π

2ωa
sin

2πx

a
x̂ +

α

ω
sin2 πx

a
ẑ

)
e−2αz sin 2ωt. (17)

The time-average Poynting vector is zero, and there is no net flow of energy away from the
sources in the plane z = 0.

The Poynting vector (17) does describe an energy flow in the z-direction, but this energy
propagates only characteristic distance z ≈ 2/α (≈ a for low ω) before returning back to
the sources. Again, there is also a flow of energy in the x-direction that oscillates in time,
indicating an oscillatory rearrangement of energy stored within the guide and close to the
sources.

In more detail, the instantaneous density u of electromagnetic energy in the guide is,

u =
ε0E

2

2
+
B2

2μ0

=
E2

0

2

(
ε0 sin2 πx

a
e−2αz cos2 ωt+

α2

μ0ω
2

sin2 πx

a
e−2αz sin2 ωt+

π2

μ0ω
2a2

cos2 πx

a
e−2αz sin2 ωt

)

=
E2

0

2

(
ε0 sin2 πx

a
e−2αz cos 2ωt+

π2

μ0ω
2a2

e−2αz sin2 ωt

)

=
cE2

0

2Z0

(
1

c2
sin2 πx

a
e−2αz cos 2ωt+

π2

ω2a2
e−2αz sin2 ωt

)
, (18)

recalling eq. (6). Then,

∂u

∂t
=

cE2
0

2Z0

(
π2

ωa2
− 2ω

c2
sin2 πx

a

)
e−2αz sin 2ωt

=
cE2

0

2Z0

(
π2

ωa2
sin

2πx

a
+

2α2

ω
sin2 πx

a

)
e−2αz sin 2ωt = −∇ · S, (19)

again using eq. (6) for α, which verifies that electromagnetic energy is conserved under the
flow (17).

To use the language of antennas, we can say that the electromagnetic fields in a waveguide
operated below its cutoff frequency include only near field terms; there are no far fields in
this case.2
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