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1 Problem

If two electrical charges e1 and e2 are brought to rest (slowly) at separation R, then work

W =
e1e2

R
, (1)

(in Gaussian units) must have been done by some external agent against the electrical force,

F =
e1e2

R2
12

n̂12, (2)

on charge 1, where R12 = |R12| = |r1 − r2| and n̂12 = R12/R12. We then identify an
(interaction) energy UEM as being stored in the electric field of the system,

UEM =
e1e2

R
. (3)

Suppose instead that the two charges have the same velocity v perpendicular to their
line of centers n̂12, where v � c and c is the speed of light. Then, the (Lorentz) force on
charge 1 is (see, for example, the problem at the end of sec. 38 of [1] or sec. 19-4 of [2]),

F =
e1e2

R2
12

n̂12

√
1 − v2

c2
= −∇e1e2

R12

√
1 − v2

c2
≈ e1e2

R2
12

n̂12

(
1 − v2

2c2

)
= −∇e1e2

R12

(
1 − v2

2c2

)
,

(4)
This suggests that the charges can be brought to this configuration by an external agent
that does work equal to the convection potential ψ,

W = ψ =
e1e2

R12

√
1 − v2

c2
≈ e1e2

R

(
1 − v2

2c2

)
, (5)

and that the (interaction) electromagnetic field energy of the system is also given by eq. (5).
A systematic approximation to electromagnetic fields and energies when the velocities of

all charges are small compared to c, and when effects of radiation can be ignored, was given
by Darwin in 1920 [3].1 This approximation is reviewed in sec. 65 of [1], where it is implied
that the Darwin Hamiltonian (energy) can be obtained from the Darwin Lagrangian,2

L =
∑

i

miv
2
i

2
+

∑
i

miv
4
i

8c2
−

∑
i>j

eiej

Rij
+

∑
i>j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (6)

1Darwin’s analysis also ignored the magnetic moments of charge particles, which were “discovered” only
in 1925 [4].

2The fourth term in eqs. (6)-(7) was given by Heaviside in [5, 7, 9],
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by subtracting the terms of order 1/c2 from the first-order energy of the system to obtain,

U =
∑

i

miv
2
i

2
−

∑
i

miv
4
i

8c2
+

∑
i>j

eiej

Rij

−
∑
i>j

eiej

2c2Rij

[vi · vj + (vi · n̂ij)(vj · n̂ij)] . (7)

Then, for a pair of charges that move with the same velocity v perpendicular to n̂12, eq. (7)
suggests that the (interaction) electromagnetic energy of the system is given by eq. (5).

Furthermore, a calculation of the interaction electromagnetic energy,

UEM =
∑
i>j

∫
Ei · Ej + Bi · Bj

4π
dVol, (8)

of a set {i} of charges ei using the electric and magnetic fields in the Darwin approximation
appears, after integration by parts, to lead to the form,

UEM =
∑
i>j

eiej

Rij
−

∑
i>j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] . (9)

However, eqs. (5), (7) and (9) are all incorrect (and the convection potential is not a
potential energy). Explain.

For other surprising results in the Darwin approximation, see [10].

2 Solution

2.1 Work Done to Configure a Pair of Moving Charges

2.1.1 Magnetic Fields Do No Work on Point Charges

One argument is that the external agent does work against the Lorentz force, which consists
of an electric force and a magnetic force. It is well known that magnetic fields can do no
work on point charges (that have no magnetic moment),3 so the external agent should be
able to do work only against the electric part of the Lorentz force,

FE =
e1e2√

1 − v2/c2R2
12

n̂12 ≈ e1e2

R2
12

n̂12

(
1 +

v2

2c2

)
. (10)

This suggests that the charges can be brought to this configuration by an external agent
that does work,

W ≈ e1e2

R

(
1 +

v2

2c2

)
= UEM. (11)

However, this argument is misleading in that it suggests the electric force between the
charges, which depends on their velocities and accelerations as well as their positions, can
be deduced as the gradient of a scalar potential. For the special case of constant, parallel
velocities and displacements that keep n̂12 constant this can still be done, but see Appendix
B for a more general example.

3Magnetic forces do work on intrinsic magnetic moments of particles (see, for example, [11, 12]. And
in systems of charges with no magnetic moments the sum of the work done by the magnetic forces on the
charges of a system (which includes work done by magnetic torques) is always zero, but the work done by the
sum of the magnetic forces on the charges (which changes the translational kinetic energy) can be nonzero.
For examples of the latter, see [13, 14]. See also [15, 16].
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2.1.2 Work Done When the Charges Are Assembled Slowly

The argument of sec. 2.1.1 can be questioned in that the external agent must provide a force
equal and opposite to the total electromagnetic force, and the work done by this agent is
related to that total force, and not to some piece of it. However, it is important to calculate
that work carefully.

To configure the pair of charges at final separation R, one (or both) of them must have
a small velocity component vn along their line of centers during this process. For charges
that end up at rest after being moved together along their (fixed) line of centers, this small
velocity results in a small correction to the longitudinal, purely electric force between them,4

Fn =
e1e2√

1 − v2
n/c

2R2
12

≈ e1e2

R2
12

(
1 +

v2
n

2c2

)
, (12)

So, the work required to assemble the charges is,

W ≈ e1e2

R

(
1 +

v2
n

2c2

)
≈ e1e2

R
, (13)

where we consider vn to be so small that terms in v2
n/c

2 can be ignored. So, we again conclude
that the electromagnetic (interaction) energy stored in the system is given by eq. (3).

For a pair of charges whose line of centers is along the y axis (with y2 < y1, so that
n̂12 = ŷ) which end up moving with velocity v = v x̂, we suppose that they are assembled
by a motion with velocities v1 = v x̂ and v2 = v x̂ + vy ŷ where vy � v. Then, the electric
and magnetic fields on charge 2 due to charge 1 are,

E1 ≈ − e1

R2
12

(
1 +

v2

2c2

)
ŷ, B1 ≈ −v

c

e1

R2
12

(
1 +

v2

2c2

)
ẑ, (14)

The Lorentz force on charge 2 is,

F = e2

(
E1 +

v2

c
× B1

)
≈ −e1e2

R2
12

vvy

c2
x̂− e1e2

R2
12

(
1 − v2

2c2

)
ŷ. (15)

During a time interval dt charge 2 moves distance ds2 = v2 dt = (v x̂ + vy ŷ) dt, so the
external agent does work,5

dW = −F · ds2 ≈ e1e2

R2
12

(
1 +

v2

2c2

)
vy dt =

e1e2

R2
12

(
1 +

v2

2c2

)
dy. (16)

Although the y-component of the force is large compared to its x-component, the displace-
ment in x is much larger than that in y, so the Fx contributes a non-negligible amount to
the work. The total work done in reducing the y-separation of the charges to R is,

W =
e1e2

R

(
1 +

v2

2c2

)
= UEM, (17)

in agreement with eq. (11). int

4The velocity vn also results in a small magnetic field, which does not change the force in this case.
5The Lorentz force on charge 1 is perpendicular to v1, so no work is done on charge 1.
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2.2 Darwin’s Approximation

2.2.1 Interaction Electromagnetic Energy via the Darwin Hamiltonian

The Lagrangian for a charge e of mass m (with no magnetic moment) that moves with
velocity v in an external electromagnetic field that is described by potentials φ and A can
be written as (see, for example, sec. 65 of [1]),

L = −mc2
√

1 − v2/c2 − eφ+ e
v

c
· A. (18)

Darwin [3] worked in the Coulomb gauge, and kept term only to order v2/c2.6 Then, the
scalar and vector potentials due to a charge e that has velocity v are (see sec. 65 of [1] or
sec. 12.6 of [18]),

φ =
e

R
, A =

e[v + (v · n̂) n̂]

2cR
(Coulomb gauge), (19)

where n̂ is directed from the charge to the observer, whose (present) distance from the charge
is R.

Combining equations (18) and (19) for a collections of charged particles, and keeping
terms only to order v2/c2, we arrive at the Darwin Lagrangian,

L =
∑

i

miv
2
i

2
+

∑
i

miv
4
i

8c2
−

∑
i>j

eiej

Rij

+
∑
i>j

eiej

2c2Rij

[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (6)

where we ignore the constant sum of the rest energies of the particles.
The Lagrangian (6) does not depend explicitly on time, so the corresponding Hamiltonian,

H =
∑

i

pi · vi − L, (20)

is the conserved energy of the system, where,

pi =
∂L
∂vi

= mivi +
miv

2
i

2c2
vi +

∑
j �=i

eiej

2c2Rij
[vj + n̂ij(vj · n̂ij)]

= mivi +
miv

2
i

2c2
vi +

∑
j �=i

eiAj(ri)

c
= mivi +

miv
2
i

2c2
vi +

eiAext,i(ri)

c
, (21)

is the canonical momentum of particle i, and Aext,i is the vector potential due to charges
other than ei. Hence, the Hamiltonian/energy is,

U =
∑

i

miv
2
i

2
+

∑
i

3miv
4
i

8c2
+

∑
i>j

eiej

Rij
+

∑
i>j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (22)

as first derived by Darwin [3].

6Darwin’s method can be considered as a kind of quasistatic approximation. See, for example, [17] and
Sec. 2.2.3 below.
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The part of this Hamiltonian/energy associated with electromagnetic interactions is,

UEM =
∑
i>j

eiej

Rij

+
∑
i>j

eiej

2c2Rij

[vi · vj + (vi · n̂ij)(vj · n̂ij)] =
1

2

∑
i

ei

(
φext(ri) +

vi · Aext(ri)

c

)
,

(23)
where φext is the electric scalar potential due to charges other than ei. The energy (23)
reduces to eqs. (11) and (17) for a pair of charges that moves with velocity v perpendicular
to their line of centers.7,8

How then is it possible to misinterpret sec. 65 of [1] to arrive at the erroneous eq. (7)?
This follows from misuse of a prescription given in sec. 40 of [20]: Let the Lagrangian

be of the form L = L0 + L′, where L′ is a small correction to the function L0. Then, the
corresponding addition H′ in the Hamiltonian H = H0 + H′ is related by,

(H′)p,q = −(L′)q̇,q. (40.7)

This suggests that if we wish to express the Hamiltonian/energy in terms of q̇ and q, then
H′(q̇, q) = −L′(q̇, q). A more correct interpretation is that,

H′(p, q) = −L′(p, q), (26)

which indicates that the Hamiltonian is a function of the coordinates q and the corresponding
canonical momenta p, so the small correction L′ to the Lagrangian should be expressed in
terms of p and q before subtracting it from the lowest-order term H0(p, q) of the Hamiltonian.
Then, one could recast the Hamiltonian/energy in terms of q̇ and q, if desired, which can
result in terms of H0(p, q) contributing to H ′(q̇, q). That is, H ′(p, q) �= H ′(q̇, q).

In the present example, the lowest-order Hamiltonian is, in terms of canonical momenta,

H0 =
∑

i

p2
i

2mi
+

∑
i>j

eiej

2c2Rij
. (27)

To describe the small correction L′ to the Darwin Lagrangian (6) in terms of the pi rather
than the vi it suffices to approximate the relation (21) as,

vi =
pi

mi
+ O(1/c2). (28)

7The integral form of eq. (23),

UEM =
1
2

∫ (
ρφ +

J · A
c

)
dVol, (24)

shows the possibly surprising result that the electromagnetic energy in the Darwin approximation has the
form of that for a system of quasistatic charge and current densities ρ and J (which implies use of the
Coulomb gauge; see, for example, sec. 5.16 of [18] or secs. 31 and 33 of [19]). See sec. 2.2.2 below for further
discussion.

8Sept. 1, 2021, thanks to Tim Minteer. For the special case of two charges that have the same velocity
v1 = v2 = v, the interaction energy eq. (23) becomes,

UEM =
e1e2

R12

[
1 +

v2

2c2

[
1 + (v̂ · n̂12)2

]] ≈ e1e2

R12

1 − v2

c2 + 2 v2

c2 (v̂ · n̂12)2[
1 − v2

c2 + v2

c2 (v̂ · n̂12)2
]3/2

=
e1e2

R12

1 − v2

c2 (v̂ × n̂12)2 + v2

c2 (v̂ · n̂12)2[
1 − v2

c2 (v̂ × n̂12)2
]3/2

. (25)

However, the latter form predicts nonzero UEM = e1e2/R12

√
1 − v2/c2 for v ⊥ n̂12 as v → c, in which case

the Lorentz force on the charges goes to zero [21], and hence so should the field interaction energy UEM.

5



Then, we have,

L′
p,q =

∑
i

p4
i

8mic2
+

∑
i>j

eiej

2mimjc2Rij
[pi · pj + (pi · n̂ij)(pj · n̂ij)] , (29)

from which we obtain the Darwin Hamiltonian,

H =
∑

i

p2
i

2mi
−

∑
i

p4
i

8m3
i c

2
+

∑
i>j

eiej

Rij
−

∑
i>j

eiej

2mimjc2Rij
[pi · pj + (pi · n̂ij)(pj · n̂ij)] , (30)

as given in [1, 3]. To express the Hamiltonian/energy (30) in terms of velocities rather than
momenta, we do not retain sufficient accuracy with the approximation (28); rather we must
use eq. (21), in which case eq. (30) transforms into eq. (22).

2.2.2 Direct Calculation of the Interaction Electromagnetic Energy in the
Darwin Approximation

The interaction electromagnetic energy associated with a set {i} of charges ei can be written
as,

UEM =
∑
i>j

∫
Ei · Ej + Bi · Bj

4π
dVol. (8)

The electric and magnetic fields of a charge e at distance R from an observer follow in
the Darwin approximation from the potentials (19),

E = −∇φ− ∂A

∂ct
=

e

R2
n̂ − e

2c2R

[
a + (a · n̂) n̂ − v2 − 3(v · n̂)2

R
n̂

]
≡ e

R2
n̂ + E′,(31)

B = ∇ × A =
ev × n̂

cR2
, (32)

where a = dv/dt is the (present) acceleration of the charge.9 See [22] for applications of
these relations to considerations of electromagnetic momentum rather than energy.10

9Sec. 65 of [1] shows that in the Darwin approximation the Liénard-Wiechert potentials (Lorenz gauge)
reduce to V = e/R + (e/2c2)∂2R/∂t2 and A = ev/cR, from which eqs. (31)-(32) also follow.

10The Lorentz force on a charge e′ with velocity v′ is, in the Darwin approximation,

F = e′
(
E +

v′

c
× B

)
=

e′e
R2

n̂ − e′e
2c2R

[
a + (a · n̂) n̂ − v2 − 3(v · n̂)2 − 2v′ · v

R
n̂ − 2(v′ · n̂)v

R

]
. (33)

This force depends on the acceleration a of the source charge e, but not on the acceleration a′ of the charge
e′, and has noncentral terms (not along n̂).

For comparison, the (central) force law of Weber [23] (1846) is,

FWeber =
e′e
R2

n̂
[
1 +

1
c2

(
v′2 + v2 − 2v′ · v − 3

2
[n̂ · (v′ − v)]2

)]
+

e′e
c2R

n̂ [n̂ · (a′ − a)], (34)

while that of Clausius [24] (1876) is,

FClausius =
e′e
R2

n̂
(

1 − v′ · v
c2

)
− e′e

c2R2
[n̂ · (v′ − v)](v′ − v) +

e′e
c2R

(a′ − a), (35)

both of which depend on the acceleration a′ of the observing charge e′.
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The potentials (19) are in the Coulomb gauge, so that ∇ · A = 0, and hence,

∇ · E′ = 0, with E′ = −∂A
∂ct

. (36)

The electric part of the energy (8) can be written as,

UE =
∑
i>j

eiej

∫
n̂i · n̂j

4πR2
iR

2
j

dVol +
∑
i>j

∫ (
ein̂i ·E′

j

4πR2
i

+
ejn̂j · E′

i

4πR2
j

)
dVol + O

(
1

c4

)
. (37)

It is well known (see, for example, eqs. (1)-(3) or the Appendix of [33]), that,∫
n̂i · n̂j

4πR2
iR

2
j

dVol =
1

Rij
. (38)

For the second integral in eq. (37), we integrate by parts to find,11

∫
n̂i · E′

j

R2
i

dVol = −
∫

E′
j · ∇

(
1

Ri

)
dVol =

∫
1

Ri
∇ · E′

j dVol = 0. (40)

Thus, the electric part of the interaction energy is,

UE =
∑
i>j

eiei

Rij
, (41)

which holds for charges of any velocity when we work in the Coulomb gauge.
The magnetic part of the energy (8) is,

UM =
∑
i>j

∫
Bi · Bj

4π
dVol =

∑
i>j

∫
Bi · ∇ × Aj

4π
dVol =

∑
i>j

∫
Aj · ∇ ×Bi

4π
dVol

=
∑
i>j

eivi · Aj(ri)

c
=

∑
i>j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (42)

where we note that B · ∇ × A = εlmnBl∂An/∂xm, so that integration by parts leads to
−εlmnAnBm∂Bl/∂xm = εnmlAn∂Bl/∂xm = A ·∇×B (and not to −A ·∇×B, which would
lead to eq. (9)), and that,12

∇ ×Bi =
4π

c
Ji +

∂Ei

∂ct
=

4πeivi

c
δ(r − ri) −∇∂φi

∂ct
− ∂2Ai

∂(ct)2
. (44)

Thus, we again find the interaction electromagnetic energy UEM = UE + UM to be given by
eq. (23).

11The surface integral resulting from the integration by parts in eq. (40) vanishes as follows,
∫ E′

j

Ri
· dArea = −

∫
[aj + (aj · n̂)n̂]

2c2RiRj
· dArea +

∫
(· · ·)
RiR

2
j

· dArea → −
∫

aj · n̂
c2

dΩ = 0. (39)

12In greater detail, the integrand Aj ·∇ ×Bi includes the term Aj · ∂2Ai/∂(ct)2 which is of order 1/c4,
while the integral of the term Aj · ∇∂φi/∂ct vanishes according to,

−
∫

Aj · ∇∂φi

∂ct
dVol = −

∫
∂φi

∂ct
Aj · dArea +

∫
∂φi

∂ct
∇ · Aj dVol =

∫
vi · n̂i

cR2
i

Aj · dArea → 0. (43)
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2.2.3 The “Darwin Model” (Jan. 19 2024)

A slightly different vision of Darwin’s approximation is based on a small modification to
Maxwell’s equations, as noted in [25]-[31]. See also [17].

For this, we recall the Helmholtz decomposition of the electric field,13

E = Eirr + Erot, (45)

where the irrotational and rotational components Eirr and Erot obey,14

∇ × Eirr = 0, and ∇ · Erot = 0. (46)

Then, Maxwell’s equations for the electric field can be written (in Gaussian units) as,

∇ · Eirr = 4πρ, ∇ × Eirr = 0, ∇ · Erot = 0, ∇ × Erot = −1

c

∂B

∂t
. (47)

The field equations for the magnetic field in the “Darwin Model” are,

∇ · B = 0, ∇× B =
4π

c
J +

1

c

∂Eirr

∂t
, (48)

which differ from Maxwell’s equations only by the omission of the time derivative of Erot.
In general, electric-charge conservation can be expressed as,

0 = ∇ · J +
∂ρ

∂t
= ∇ · Jirr +

∂ρ

∂t
= ∇ · Jirr +

1

4π

∂

∂t
∇ ·Eirr, (49)

with the implication that,15

Jirr = − 1

4π

∂Eirr

∂t
, Jrot = J − Jirr = J +

1

4π

∂Eirr

∂t
. (50)

Then, the second of eq. (48) can also be written as,

∇ × B =
4π

c
Jrot. (51)

In general, the fields E and B are related to the electromagnetic potentials V and A by,

E = −∇V − 1

c

∂A

∂t
, B = ∇ × A. (52)

In the Coulomb gauge (favored by Darwin), where ∇ · A(C) = 0, we have that,

E = Eirr + Erot, with Eirr = −∇V (C), Erot = −1

c

∂A(C)

∂t
. (53)

13See, for example, [32].
14The irrotational component is sometimes labeled “longitudinal” or “parallel”, and the rotational com-

ponent is sometimes labeled “solenoidal” or “transverse”.
15See also eq. (45) of [32].
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Then, from the first of eq. (47),

∇ · Eirr = −∇2V (C) = 4πρ, V (C)(r, t) =

∫
ρ(r′, t)
R

dVol′ with R = r − r′, (54)

And, from eq. (51),

∇ ×B = ∇ × (∇ × A(C)
)

= −∇2A(C) =
4π

c
Jrot, (55)

with differs from the general wave equation for the Coulomb-gauge vector potential A(C) by
the absence of the term (1/c2) ∂2A(C)/∂t2 (see, for example, eq. (43) of [32].).

The second-order differential equations for E and B in the “Darwin Model” are,

∇× (∇ × Erot) = −∇2Erot = −1

c

∂

∂t
∇ × B = −4π

c2
∂Jrot

∂t
, (56)

and

∇ × (∇ × B) = −∇2B =
4π

c2
∇× Jrot, (57)

neither of which are wave equations. That is, electromagnetic radiation does not exist in the
“Darwin Model”.

The forms of eqs. (56)-(57) imply that in the “Darwin Model” the fields E and B are
of order 1/c2 or less, if Jrot has no behavior of order 1/c or higher. But, in general the
“Darwin Model” is not completely equivalent to the Darwin approximation in the sense
that terms in the electromagnetic fields of order higher that 1/c2 are excluded in the latter
approximation.16 Possibly, advocates of the “Darwin Model” tacitly assume that the fields
E and B were approximated only to order 1/c2.17

A Appendix: Comment on the Electric Field in the

Darwin Approximation

The part of the electric field in the Darwin approximation that depends on the acceleration
is, according to eq. (31),

Ea,Darwin = −ea + (a · n̂)n̂

2c2R
. (58)

This is possibly surprising in that Liénard-Wiechert electric field of an accelerating charge
(see sec. 63 of [1] or sec. 14.1 of [18]), depends (explicitly) on the acceleration as,

Ea,L−W = − e

c2

[
a− (a · n̂)n̂

R

]
retarded

+ O
(

1

c3

)
. (59)

16For example, a uniform charge density ρ0 in its rest frame appears to be ρ = γρ0 in a frame in which
the charge density has velocity v, where γ = 1/

√
1 − v2/c2. In that frame, the current density appears to

be J = γρ0v. These sources lead to electromagnetic fields in the “Darwin Model” that depend on all orders
of 1/c.

17This seems to be the case for [25].
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We illustrate the compatibility of the Darwin approximation with the Liénard-Wiechert
electric field for the case of a charge e that moves along the x-axis with constant acceleration
a, according to x = at2/2. The observer is at x = d on the x-axis, so that n̂ = x̂. Then,

Ea,Darwin = − ea

c2d
x̂, and Ea,L−W = 0. (60)

However, we should compare the total electric fields before concluding that Darwin does not
agree with Liénard and Wiechert. In particular, at time t = 0, the Darwin approximation is
that,

EDarwin =
e

d2

(
1 − ad

c2

)
x̂, (61)

while the Liénard-Wiechert field is,

EL−W = e

[
x̂ − v/c

γ2R2(1 − v · n̂/c)3

]
retarded

. (62)

The retarded time is t′ = t−R/c = −R/c ≈ −d/c. Then, the retarded velocity is [v] = at′ =
−ad/c (in the −x direction), the retarded Lorentz factor is [γ] = 1 + O(1/c4), the retarded
position is [x] = at′2/2 = ad2/2c2, and the retarded distance is [R] = d− x = d(1− ad/2c2).
Using these in eq. (62), we find,

EL−W ≈ e
1 + ad/c2

d2(1 − ad/2c2)2(1 + ad/c2)3
x̂ ≈ e

d2

(
1 − ad

c2

)
x̂ = EDarwin. (63)

The lesson is that when converting the Liénard-Wiechert fields from retarded time to
present time, the present acceleration affects all terms, whether or not they contain explicit
dependence on the retarded acceleration.

B Appendix: “Classical Positronium”: v1 = −v2 ⊥ n̂12

In the Darwin approximation, the electromagnetic energy (23) for two charges with v1 =
−v2 = v and v · n̂12 = 0, namely UEM = e1e2/R− e1e2v

2/2c2R, differs from that of the case
v1 = v2 = v only in the sign of the magnetic energy −e1e2v

2/2c2R. This is to be expected,
as the electric (Coulomb) energy is independent of the velocity, while the magnetic energy
changes sign when the velocity of one of the two charges is reversed.

An example of the above situation is “classical positronium”, in which of a pair of charges
±e and mass m move in a circular orbit of radius r with common velocity v.18 Then, their
separation is R = 2r, their accelerations are,

v̇± = a± = ∓v
2

r
n̂ = ∓2v2

R
n̂, where n̂ =

R

R
=

r− − r+

|R| , and Ṙ = v−−v+ = 2v− (⊥ n̂),

(64)

18In this approximation (1920), the intrinsic magnetic moments of the charges are neglected, which
moments were first postulated only in 1925 [4]. For the Darwin approximation including the magnetic
moments of the electron and positron, see Appendix A.2 of [34].
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and from eqs. (31)-(32) the fields due to the positive charge at the position of the negative
charge are,

E =
e

R2
n̂

(
1 − 3v2

2c2

)
, B =

ev+ × n̂

cR2
= −ev− × n̂

cR2
. (65)

Hence, the Lorentz force on the negative charge is,

F− = −e
(
E +

v−
c

× B
)

= − e

R2
n̂

(
1 − v2

2c2

)
. (66)

We can also obtain the force on the negative charge from the Darwin Lagrangian (6), after
re-expressing it in the center-of-mass frame as,

L = mv2 +
mv4

4c2
+
e2

R
+

e2

2c2R
[v2 + (v− · n̂)2] , (67)

using eq. (64). Then,

∂L
∂v−

= 2mv− +
mv2

c2
v− +

e2

c2R
[v− + (v− · n̂) n̂] , (68)

d

dt

∂L
∂Ṙ

=
1

2

d

dt

∂L
∂v−

= m

(
1 +

v2

2c2

)
a− +

e2v2

c2R2
n̂ +

e2

c2R
a− = m

(
1 +

v2

2c2

)
a− − e2v2

c2R2
n̂

=
∂L
∂R

= − e2

R2
n̂

(
1 +

v2

2c2

)
, (69)

recalling eq. (64), and so (see also [10, 35]),

m

(
1 +

v2

2c2

)
a− = F− = − e2

R2
n̂

(
1 − v2

2c2

)
, (70)

in agreement with eq. (66).
Solving this for the velocity v of the charges in the orbit of diameter R, we have,

v2

c2
≈ r0

2R

(
1 − r0

4R

)
, (71)

where r0 = e2/mc2 is the classical electromagnetic radius of the charges ±e. Then,

KE ≈ m

(
1 +

v2

2c2

)
v2 ≈ e2

2R

(
1 − r0

4R

)
, (72)

and,

UEM = −e
2

R

(
1 − v2

2c2

)
≈ −e

2

R

(
1 − r0

4R

)
≈ −2KE. (73)

recalling eq. (23).
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If it is desired to reduce the separation R slowly by an external force Fext, such that the
orbit remains essentially circular at all times, then the total energy U(R) of the “positronium”
must be reduced, noting that,

U(R) = KE + UEM ≈ −KE ≈ UEM

2
≈ −mv2 ≈ − e2

2R

(
1 − r0

4R

)
. (74)

according to eqs. (71) and (73). Since both the angular momentum and the energy must
decrease as R decreases, the external force should be tangential, not radial, with Fext opposite
in direction to the velocities v±.19 Then, the rate of change of separation, Ṙ, and the rate
of change of velocity, v̇, are related by,

2Fextv = −dU
dt

= −dU
dR

Ṙ ≈ 2mvv̇, (75)

so that v̇ ≈ Fext/m even though the force is in the opposite direction to the velocity. This
phenomenon is called the satellite paradox [37, 38].

For an electromagnetic system such as “classical positronium”, the simplest way to gen-
erate a tangential external force may be place the system in a spatially uniform, but time-
varying, magnetic field, which leads to the phenomenon of classical diamagnetism [39].

As the separation between the charges is reduced, we expect that the sum of the work
done by the Lorentz force of each charge on the other should equal the change in the elec-
tromagnetic energy (73). Of course, the magnetic fields of the charges do no work, so we
consider the work done by the electric fields (31). These fields are not derivable from a scalar
potential, so we must calculate the work done along the spiral paths of the charges.

During a small time interval dt the change in radial position of a charge is dr = ṙ dt,
while on the gentle spiral the path length in the azimuthal direction is,

ds = rφ̇ dt =
rφ̇

ṙ
dr ≈ v

ṙ
dr 
 dr, (76)

where,

φ̇ ≈ v

r
≈

√
r0
4r3

c, (77)

according to eq. (71). The velocity of the positive charge is,

v+ = −ṙ n̂ + rφ̇ φ̂ ≈ −ṙ n̂ + v φ̂, (78)

recalling our convention that n̂ points from the positive to the negative charge. From eq. (77)
we find that,

rφ̈ ≈ −3

2
ṙφ̇ ≈ −3

2

ṙv

r
, (79)

so the acceleration is,

a+ = (rφ̇
2 − r̈) n̂ + (rφ̈+ 2ṙφ̇) φ̂ ≈ v2

r
n̂ +

ṙv

2r
φ̂ =

2v2

R
n̂ +

ṙv

R
φ̂, (80)

19A transient radial force perturbs the orbit from circular to elliptical without changing the energy U or
the angular momentum. See, for example, pp. 40-41 of [36].
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where we neglect the term in r̈. The electric field (31) due to the positive charge at the
position of the negative charge is,

E ≈ e

R2
n̂− e

2c2R

[(
2an − v2

R

)
n̂ + aφ φ̂

]
≈ e

R2

(
1 − 3v2

2c2

)
n̂− eṙv

2c2R2
φ̂. (81)

The work done on the negative charge by this electric field as the radius of the orbit changes
by dr is,

dW− = −eEn dr − eEφ ds ≈ −e
(
En + Eφ

v

ṙ

)
dr ≈ − e2

R2

(
1 − v2

c2

)
dr ≈ − e2

R2

(
1 − r0

2R

)
dr,

(82)
recalling eq. (76). An equal amount of work is done on the positive charge, so the total work
done by the electric fields while the radius changes by dr = dR/2 obeys,

dW

dR
≈ − e2

R2

(
1 − r0

2R

)
=

d

dR

[
e2

R

(
1 − r0

4R

)]
≈ −dUEM

dR
, (83)

recalling eq. (73). As expected, the work done by the electric field is equal and opposite to
the change in the electromagnetic energy stored in the system.

While we can write the electric force on, say, the negative charge when in a circular orbit
with separation R as the gradient of a scalar potential,

− eE ≈ − e2

R2

(
1 − 3v2

2c2

)
n̂ ≈ − e2

R2

(
1 − 3r0

4R

)
n̂ = −∇R

[
− e2

R2

(
1 − 3r0

8R

)]
, (84)

that potential is not the electromagnetic energy UEM. However, at order v2/c2 the electric
fields in “classical positronium” are not conservative, so we should not expect that F = −∇U
to hold as when ∇ × E = 0.
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