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Many discussions of Gaussian beams emphasize a single electric field component, such
as Ey = f(r, z) ei(kz−ωt), of a cylindrically symmetric beam of angular frequency ω and wave
number k = nω/c propagating along the z axis in a medium with index of refraction n. Here,
we generalize to the case of a beam with an elliptical cross section. Of course, the electric
field must satisfy the free-space Maxwell equation ∇ · E = 0. If f(r, z) is not constant and
Ex = 0, then we must have nonzero Ez. That is, the desired electric field has more than one
vector component.

To deduce all components of the electric and magnetic fields of a Gaussian beam from
a single scalar wave function, we follow the suggestion of Davis [2] and seek solutions for a
vector potential A that has only a single Cartesian component (such that (∇2A)j = ∇2Aj

[4]). We work in the Lorenz gauge (and SI units), so that the electric scalar potential Φ is
related to the vector potential A by,

∇ · A = −n
2

c2
∂Φ

∂t
= i

n2ω

c2
Φ = i

k2

ω
Φ. (1)

The vector potential can therefore have a nonzero divergence, which permits solutions having
only a single component.

Of course, the electric and magnetic fields can be deduced from the potentials via,

E = −∇Φ − ∂A

∂t
= i

ω

k2
∇(∇ ·A) + iωA, (2)

using the Lorenz condition (1), and,

B = ∇ × A. (3)

The vector potential satisfies the free-space (Helmholtz) wave equation,

∇2A− n2

c2
∂2A

∂t2
= (∇2 + k2)A = 0. (4)

We seek a solution in which the vector potential is described by a single Cartesian component
Aj that propagates in the +z direction with the form,

Aj(r) = ψ(r) ei(kz−ωt). (5)

Inserting trial solution (5) into the wave equation (4) we find that,

∇2ψ + 2ik
∂ψ

∂z
= 0. (6)

In the usual analysis, one now assumes that the beam is cylindrically symmetric about
the z axis and can be described in terms of three geometric parameters the diffraction angle
θ0, the waist w0, and the depth of focus (Rayleigh range) z0, which are related by,

θ0 =
w0

z0
=

2

kw0
, and z0 =

kw2
0

2
=

2

kθ2
0

. (7)
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Changing variables and noting relations (7), eq. (6) takes the form,

∇2
⊥ψ + 4i

∂ψ

∂ς
+ θ2

0

∂2ψ

∂ς2
= 0, (8)

where,

∇2
⊥ψ =

∂2ψ

∂ξ2 +
∂2ψ

∂υ2
=

1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
, (9)

since ψ is assumed to be independent of the azimuth φ.
The form of eq. (8) suggests the series expansion,

ψ = ψ0 + θ2
0ψ2 + θ4

0ψ4 + ... (10)

in terms of the small parameter θ2
0. Inserting this into eq. (8) and collecting terms of order

θ0
0 and θ2

0, we find,

∇2
⊥ψ0 + 4i

∂ψ0

∂ς
= 0, (11)

and,

∇2
⊥ψ2 + 4i

∂ψ2

∂ς
= −∂

2ψ0

∂ς2
, (12)

etc.

1 Zeroth-Order Gaussian Beam

Equation (11) is called the paraxial wave equation, whose solution we obtain by an “educated
guess”. Namely, we expect the transverse behavior of the wave function ψ0 to be Gaussian,
but with a width that varies with z. Also, the amplitude of the wave should vary with z,
asymptotically falling as 1/z. We work in the scaled coordinates ρ and ς , and write a trial
solution as,

ψ0 = h(ς) e−f(ς)ρ2

, (13)

where the possibly complex functions f and h are defined to obey f(0) = 1 = h(0). Since the
transverse coordinate ρ is scaled by the waist w0, we see that Re(f) = w2

0/w
2(ς) where w(ς)

is the beam width at position ς . From the geometric parameters (6) we see w(ς) ≈ θ0z = w0ς
for large ς. Hence, we expect that Re(f) ≈ 1/ς 2 for large ς . Also, we expect the amplitude
h to obey |h| ≈ 1/ς for large ς .
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Plugging the trial solution (13) into the paraxial wave equation (11) we find that,

− fh + ih′ + ρ2h(f2 − if ′) = 0. (14)

For this to be true at all values of ρ we must have,

f ′

f2
= −i, and

h′

fh
= −i. (15)

We see that f = h is a solution – despite the different physical origin of these two functions
as the transverse width and amplitude of the wave. We integrate the first of eq. (15) to
obtain,

1

f
= C + iς. (16)

Our definition f(0) = 1 determines that C = 1. That is,

f =
1

1 + iς
=

1 − iς

1 + ς2
=
e−i tan−1 ς

√
1 + ς2

. (17)

Note that Re(f) = 1/(1 + ς2) = w2
0/w

2(ς), while |f | = 1/
√

1 + ς2, so that f = h is in fact
consistent with the asymptotic expectations discussed above. The longitudinal dependence
of the width of the Gaussian beam is now seen to be,

w(ς) = w0

√
1 + ς2. (18)

The lowest-order wave function is,

ψ0 = f e−fρ2

=
e−i tan−1 ς

√
1 + ς2

e−ρ2/(1+ς2) eiςρ2/(1+ς2). (19)

The factor e−i tan−1 ς in ψ0 is the so-called Gouy phase shift, which changes from 0 to π/2
as z varies from 0 to ∞, with the most rapid change near the z0. For large z the phase
factor eiςρ2/(1+ς2) can be written as eikr2

⊥/(2z), recalling eq. (6). When this is combined with
the traveling wave factor ei(kz−ωt) we have,

ei[kz(1+r2
⊥/2z2)−ωt] ≈ ei(kr−ωt), (20)

where r =
√
z2 + r2

⊥. Thus, the wave function ψ0 is a modulated spherical wave for large z,
but is a modulated plane wave near the focus.

2 Second-Order Gaussian Beam

The solution to eq. (12) for ψ2 has been given in [2], and that for ψ4 has been discussed in
[3].

In particular,

ψ2 =

(
f

2
− f3ρ4

4

)
ψ0 =

(
f2

2
− f4ρ4

4

)
e−fρ2

. (21)
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We now verify that the form (21) satisfies eq. (12). First,

− ∂2ψ0

∂ς2
= − ∂2

∂ς2
f e−fρ2

= − ∂

∂ς
f ′(1 − fρ2) e−fρ2

= i
∂

∂ς
(f2 − f3ρ2) e−fρ2

= if ′[2f − 3f2ρ2 − ρ2(f2 − f3ρ2)] e−fρ2

=
(
2f3 − 4f4ρ2 + f5ρ4

)
e−fρ2

, (22)

recalling eq. (15). Next,

∂2ψ2

∂ξ2 =
∂2

∂ξ2

(
f2

2
− f4ρ4

4

)
e−fρ2

=
∂

∂ξ
ξ

(
−f3 +

f5ρ4

2
− f4ρ2

)
e−fρ2

=

[
−f3 +

f5ρ4

2
− f4ρ2 + ξ2

(
4f5ρ2 − f6ρ4

)]
e−fρ2

(23)

Hence,

∇2
⊥ψ2 =

(−2f3 + 5f5ρ4 − 2f4ρ2 − f6ρ4
)
e−fρ2

(24)

Finally,

4i
∂ψ2

∂ς
= 4i

∂

∂ς

(
f2

2
− f4ρ4

4

)
e−fρ2

= 4if ′
(
f − f3ρ4 − f2ρ2

2
+
f4ρ4

4

)
e−fρ2

=
(
4f3 − 4f5ρ4 − 2f4ρ2 + f6ρ4

)
e−fρ2

(25)

Thus,

∇2
⊥ψ2 + 4i

∂ψ2

∂ς
=

(
2f3 + f5ρ4 − 4f4ρ2

)
e−fρ2

= −∂
2ψ0

∂ς2
. (26)

3 Third-Order Electric and Magnetic Fields

To obtain the electric and magnetic fields of a second-order Gaussian beam that is polarized
in the y direction,1 we take the vector potential to be,

Ax = 0, Ay =
E0

iω
(ψ0+θ

2
0ψ2) e

i(kz−ωt) =
E0

iω

[
f + θ2

0

(
f2

2
− f4ρ4

4

)]
e−fρ2

ei(kz−ωt), Az = 0.

(27)
Then,

i
ω

k2
∇·A = −E0θ

2
0y

4

[
2f2 + θ2

0

(
f3 − f5ρ4

4
− f4ρ2

)]
e−fρ2

ei(kz−ωt) ≈ −E0θ
2
0y

2
f2 e−fρ2

ei(kz−ωt).

(28)

1Other polarizations are, of course, possible. A vector potential with only an x-component leads to
x-polarization, while one with only a z-component leads to radial polarization, as discussed, for example, in
secs. 2.4 and 2.5 of [1], respectively.
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and the electric field follows from eq. (2) as,

Ex ≈ θ2
0

xy

w2
0

f2E0y,

Ey ≈
[
1 + θ2

0

(
f2y2

w2
0

− f3ρ4

4

)]
E0y where E0y = E0f e

−fρ2

ei(kz−ωt), (29)

Ez ≈ −iθ0
y

w0

[
f + θ2

0

(
1 − fρ2

2

)]
E0y,

where we neglect terms of order θ4
0, and note that f ′ = −if2/z0 = −if2kθ2

0/2 = −if2θ0/w0.
Similarly, the magnetic field follows from eq. (3) as,

Bx = −
(

1 − θ2
0

f3ρ4

4

)
n

c
E0y,

By = 0, (30)

Bz = iθ0
x

w0
f

[
1 + θ2

0

(
f

2
− f3ρ4

4
+
f2ρ2

2

)]
n

c
E0y.
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