
Displacement Current of a Uniformly Moving Charge
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(June 15, 2010; updated October 14, 2017)

1 Problem

It is well known that the magnetic field B of a (point) charge q that moves with uniform
velocity v in vacuum can be related to its electric field E (in SI units) by,

B =
v

c2
× E. (1)

Deduce a relation between the magnetic field and the “displacement-current density” ε0 ∂E/∂t.

2 Solution

The solution follows [1], which contains a good discussion of the displacement current.1

The electric field E at an observation point r at the moment when the moving charge is
at the origin can be deduced by a Lorentz transformation of the field E� = q r�/4πε0r

�3 in
the rest frame of the charge,

E = E�
‖ + γE�

⊥ = (E� · v̂) v̂ + γ[E� − (E� · v̂) v̂] = γE� + (1 − γ)(E� · v̂) v̂, (2)

where γ = 1/
√

1 − β2, β = v/c, and the distance r� is related by,

r� = r�
‖ + r�

⊥ = γr‖ + r⊥ = γ(r · v̂) v̂ + r − (r · v̂) v̂ = r + (γ − 1)(r · v̂) v̂, (3)

since r‖ = r�
‖/γ according to the Lorentz contraction. Then,

r�2 = γ2r2
‖ + r2

⊥ = γ2[(r · v̂)2 + (1 − β2)(r2 − (r · v̂)2) = γ2r2(1 − β2 sin2 θ), (4)

where θ is the angle between r and v. Combining eqs. (2)-(4) we obtain,

E = γ
q r

4πε0r�3
=

q r

4πε0γ2r3(1 − β2 sin2 θ)3/2
, (5)

such that the electric field of the uniformly moving charge points away from the present
position of the charge, and varies with angle for fixed r, being largest at θ = 90◦.

The magnetic field B can be obtained from the electric field in the charge’s rest frame
according to the transformation,

B = γ
v

c2
× E� =

v

c2
× E = γ

q

4πε0c2r�3
v × r = γ

μ0q

4πr�3
v × r, (6)

1In what may be the earliest paper on the fields of a uniformly moving charge [2], J.J. Thomson implied
that he would relate these to the displacement current, his eq. (1), but he did not do this in the sense of the
present note. See also pp. 149-150 of [3], and [4].

1



recalling eq. (2).2

The displacement-current density is,

ε0
∂E

∂t
= ε0

E(q at v dt) − E(q at origin)

dt
= ε0Edipole = 3γ2 (γq v · r̂) r̂

4πr�3
− γq v

4πr�3
, (7)

where Edipole is the field of an electric dipole that has velocity v and separation of charges
±q by distance v in the lab frame, and hence by distance γv in the rest frame of the dipole.3

That is, the dipole moment in its rest frame is p� = γq v. Lines of the displacement-current
density (7) form closed loops passing through the charge q, as shown in the figure below
(from [1]). For large velocity, the field pattern is flattened perpendicular to v.

Comparing with eq. (6), we see that the magnetic field can be expressed in terms of the
displacement-current density (7) as,

B = μ0r × ε0
∂E

∂t
. (10)

The forms (6) for the magnetic field at the observer relate it to the distant, moving charge,
while the form (10) relates it to the time-dependent electric field at the observer. The former
relations have the character of action at a distance, while the latter relation illustrates the
spirit of Maxwell’s vision of a dynamical field theory of electromagnetism [8]. One can
interpret eq. (10) as implying that the “local” cause of the magnetic field at the observer is
the nearby displacement-current density, while eq. (6) indicates that the “ultimate” cause of
the magnetic field is the distant, moving charge.4

2The results (5)-(6) were first obtained in 1888 by Heaviside [5] and by Thomson (1889) [6] via different
methods. For commentary on this, see the end of [7].

3We can confirm eq. (7) by differentiation of eq. (5), noting that r⊥ = r�
⊥ is constant in time while

dr/dt ≡ ṙ = −v since vector r points from the moving charge to the observer. Thus, ṙ‖ = −v, and from
eq. (4),

ṙ� = γ2 r‖ṙ‖
r�

= −γ2 r · v
r�

, (8)

whence,

ε0
∂E
∂t

= γ
q ṙ

4πr�3
− 3γ

q ṙ�r
4πr�4

= −γ
q v

4πr�3
+ 3γ3 q (r · v) r

4πr�5
= ε0Edipole, (9)

where Edipole is the field of an electric dipole of moment p� = γq v that has velocity v.
4For related discussion, see Appendix A.5 of [9] and the Appendix of [10].
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As usual, the presence of the displacement-current term in Maxwell’s fourth equation,

∇ ×B = μ0

(
J + ε0

∂E

∂t

)
, (11)

(in vacuum) provides consistency for Ampère’s law in the form,

∮
loop

B · dl = μ0Ithru + μ0

∫
loop

ε0
∂E

∂t
· dArea, (12)

since, in general, the current of the moving charge cannot be said to pass through the area
of the loop considered in the integration.5,6,7

5For example, consider a circular loop centered on the v-axis that passes through the observer at distance
r from the moving charge, and take the area of loop to consist of a conical surface that extends to “infinity”
with vector r as a generator, with the surface completed by a spherical cap also at “infinity” (on which the
fields are negligible). Then, eq. (12), together with eq. (7), tells us that 2πr⊥Bφ,

2πr sin θBφ = μ0

∫
loop

ε0
∂E
∂t

· dArea = μ0

∫ ∞

r

γqv

4πr�3
2πr sin θ dr sin θ =

2πμ0qv sin2 θ

4πγ2(1 − β2 sin2 θ)3/2

∫ ∞

r

dr

r2

= − 2πμ0qv sin2 θ

4πγ2r(1 − β2 sin2 θ)3/2
= −2πr sin θ

qv

4πγ2r3(1 − β2 sin2 θ)3/2
μ0r sin θ = −2πr sin θ

∣∣∣∣ε0 ∂E
∂t

× μ0r
∣∣∣∣(13)

recalling that the observer is at angle θ to the v-axis, which leads again to eq. (10) for the magnetic field of
the uniformly moving charge.

6A calculation was made in 1939 by Cullwick, pp. 149-150 of [3], taking the surface of the loop to be a
spherical cap of radius r. Here,

μ0

∫
loop

ε0
∂E
∂t

· dArea = μ0

∫ 1

cos θ

qv(3γ2 − 1) cos θ

4πγ2r3(1 − β2 sin2 θ)3/2
2πr2 d cos θ. (14)

This integral is difficult, so (like Cullwick) we consider only low velocities, where β2 ≈ 0 and γ ≈ 1. Then,

μ0

∫
loop

ε0
∂E
∂t

· dArea = μ0

∫ 1

cos θ

2qv cos θ

4πr3
2πr2 d cos θ =

2πμ0qv(1 − cos2 θ)
4πr

= 2πr sin θ
μ0qv sin θ

4πr2

= 2πr sin θBφ, (15)

as expected.
7Taking the surface of the loop to be a disk of radius R = r sin θ at distance z = r cos θ from the moving

charge, and again considering only low velocities, we have, noting that r =
√

R2 + z2,

μ0

∫
loop

ε0
∂E
∂t

· dArea = μ0

∫ R

0

(
3qvz2

4πr5
− qv

4πr3

)
2πRdR =

2πμ0qv

4π

(
−3z2

3r3
+

3z2

3z3
+

1
r
− 1

z

)

=
2πμ0qv sin2 θ

4πr
= 2πr sin θ

μ0qv sin θ

4πr2
= 2πr sin θBφ, (16)

using Dwight 201.03 and 201.05 [11].
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