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1 Problem

A qbit version of the Einstein-Podolsky-Rosen “paradox” [1] involves a 2-qbit entangled
state,

|0〉A|0〉B + |1〉A|1〉B√
2

, (1)

that is observed/measured some time after its creation by Alice and Bob, who are separated
by a distance large compared to the spatial extents of the two qbits (labeled A and B). If
Alice and Bob measure the qbits in the same basis, and later compared their results, these
will be either |0〉A|0〉B or |1〉A|1〉B, with 50% probability each if the experiment is repeated
many times.

This correlation led Einstein and others to suppose that either the initial state was
actually a mixture of the two states |0〉A|0〉B and |1〉A|1〉B rather than the superposition
(1), or that the observation of qbit A by Alice somehow caused qbit B to take on a value
correlated with that found by Alice (or that the observation of qbit B by Bob somehow
caused qbit A to take on a value correlated with that found by Bob).

Experiments that evaluate certain inequalities, first suggested by Bohm and Aharonov
[2], and later a stronger version due to Bell [3], confirm that the initial, entangled state is
not a mixture.1 These impressive results leave many people with the uncomfortable feeling
that quantum phenomena either involve faster-than-light “influences”, or that Nature is
“nonlocal”.

Discussions of the Einstein-Podolsky-Rosen “paradox” are usually given in terms of wave-
functions, which are not the technical language appropriate if mixtures of states are involved.
Give a discussion using density matrix operators (as introduced independently(?) in 1927 by
Landau [5] and by von Neumann [6]).

2 Solution

A review of density-matrix/operator formalism is given in the Appendix.
As discussed in Appendix A.4, the density-matrix operator for the entangled state (1) is,

ρAB

( |00〉 ± |11〉√
2

)
=

|00〉 ± |11〉√
2

〈00| ± 〈11|√
2

=
|00〉〈00| ± |00〉〈11| ± |11〉〈00| + |11〉〈11|

2
.

(2)
However, once the entangled qbits A and B become spatially separated, Alice can no

longer be sure that they are well described by eq. (2). Her ignorance of how Bob may or

1A survey of these experiments up to 1981 is given in [4].
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may not have acted upon qbit B can be formally represented by taking the trace of operator
(2) over B, resulting in the reduced density operator,

ρA = trB(ρAB) =
|0〉〈0| 〈0|0〉 ± |0〉〈1| 〈0|1〉 ± |1〉〈0| 〈1|0〉 + |1〉〈1| 〈1|1〉

2

=
|0〉〈0| + |1〉〈1|

2
=

1

2

(
1 0
0 1

)
=

I

2
. (3)

Although the original system was prepared as a pure state, Alice’s knowledge of that system
(when she is out of lightspeed communication with Bob and the second qbit) is as if her
qbit was prepared as a 50:50 mixed state of |0〉A and |1〉A. Nothing Bob does changes her
understanding of the qbit A (unless/until Bob sends her information about his activities via
a lightspeed communications channel), and when she measures it, she finds it to be a |0〉
with 50% probability, or a |1〉 with 50% probability, independent of the history of second
qbit.2 Likewise nothing Alice does changes Bob’s understanding of the qbit B (unless/until
Alice sends him information about her activities via a lightspeed communications channel).

If Alice observes qbit A to be |0〉A, she can then characterize her understanding of the
system as |0〉A|0〉B, but this does not mean that she knows that qbit B has been or will be
measured. Rather, it only means that if she somehow knows that qbit B will be measured by
Bob (in the |0〉-|1〉 basis), she can predict that the result will be |0〉B. If qbits A and B are
spacelike separated, Bob cannot know of this “prediction” of Alice prior to his observation
of qbit B.

Does qbit B have the “value” |0〉B simply because Alice predicts this to be so after her
observation that qbit A has the value |0〉A, as implied by Einstein, Podolsky and Rosen [1]?
The answer to this is NO. As noted by Peres [9], Unperformed experiments have no results.
That is, after qbits A and B are prepared in the entangled state (1), these qbits do not have
definite “values” until each of them has been measured, say by Alice and Bob.

Neither Alice nor Bob can predict the values of the qbit that they measure, and they also
consider that this qbit did not have a definite “value” prior to that measurement, although
later Alice may learn that Bob made a correct prediction as to what value Alice would
measure (and vice versa).

Alice and Bob should consider that their measurements of the qbit that reaches each
of them permits them to predict the result of a measurement by the other, but their own
measurement did not give a “value” to the other qbit.

The density matrix/operator formalism codifies how the knowledge of Alice and Bob
about the system of two entangled qbits is incomplete in different ways at different times,
but this does not imply that the formalism itself (i.e., quantum theory) is “incomplete”.

Einstein often said that the “real” situations of two spatially separated (sub)systems
should be independent of one another (meaning that one system cannot affect the other in
a way that implies faster-than-light transmission of a signal).

If separate observers A and B (who are at rest with respect to each other) look at their
respective systems at the same time (as determined by previously synchronized clocks), the

2Skeptics might infer that the procedure ρA = trB(ρAB) to represent Alice’s knowledge of the entangled
state (1) is incorrect. For further justification of its validity, see Box 2.6, p. 107 of Nielsen and Chuang [8]
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combined results of their observations of the spatially encoded qbit will be that exactly one
of A or B finds a particle present in their system.

Einstein appears to have concluded from this that the initial state of the system AB was
not the pure state (1), but rather was the mixed state,

ρEinstein =
|0〉A〈0|A |0〉B〈0|B

2
+

|1〉A〈1|A |1〉B〈1|B
2

. (4)

An interpretation of eq. (4) is that the qbits “really” were |0〉A|0〉B or |1〉A|1〉B all along, but
we didn’t know which until we “looked”.

Note that the formal knowledge of observer A, if ignorant about system B (as seems
natural if subsystems A and B are spatially separated), is the same for both the pure state
(2) and for Einstein’s mixed state (4),

ρA = trB(ρAB) = trB(ρEinstein) =
I

2
. (5)

I would like to argue (with Einstein, if he were alive), that this shows how the characterization
of knowledge of quantum systems via density operators satisfies the criterion of separability
that Einstein insisted upon.

However, it remains that the pure state (1)/(2) is a more subtle entity than Einstein’s
mixed state (4). We claim that pure states such as eqs. (1)/(2) can exist in Nature, and that
the qbits “really” do not have definite values until they both are measured. Furthermore, the
entangled state includes a correlation between the two qbit whose consequences are simple
to described by whose description of a “real” property of the system does not fit well with
a “classical” views.

The author concludes from the debate on the Einstein-Podolsky-Rosen “paradox” that it
shows the “classical” view to be “incomplete” in that it cannot accommodate the concept of
entanglement, while the existence of this concept in the quantum view is not evidence that
this latter view is “incomplete”.

A Appendix: Density Matrices

A.1 Wave Function of a Pure State

If a quantum system is in an idealized pure state, we have characterized this by a wave
function,

|ψ〉 =
∑

j

ψj |j〉, (6)

that is a weighted sum of basis states |j〉. The time evolution of state |ψ〉 has been described
by a unitary transformation U(t, t′) such that,

|ψ(t′)〉 = U(t, t′)|ψ(t)〉. (7)
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If the state |ψ〉 is observed via a (hermitian) measurement operator M whose eigenvectors
are the basis states |j〉 with corresponding eigenvalues mj, then we can write,

M =
∑

j

Mj =
∑

j

mj · Pj =
∑

j

mj · |j〉〈j|, (8)

and the probability that the result of the measurement is that state |ψ〉 is found in basis
state |j〉 is,

Pj = 〈ψ|P†
jPj|ψ〉 = 〈ψ|Pj|ψ〉 = 〈ψ|j〉〈j|ψ〉 = |〈j|ψ〉|2 . (9)

The probable value (or expectation value) of variable m for state |ψ〉 is thus,

〈m〉 =
∑

j

mjPj =
∑

j

mj〈ψ|Pj|ψ〉 = 〈ψ|
∑

j

mj · Pj|ψ〉 = 〈ψ|M|ψ〉. (10)

A.2 Density Matrix of a Pure State

The density operator ρ of a pure state (6) is simply its corresponding projection operator,

ρ = |ψ〉〈ψ| =
∑
j,k

ψjψ
�
k|j〉〈k| (pure state). (11)

Clearly, the operator ρ can be represented by the hermitian matrix whose elements are,

ρjk = ψjψ
�
k. (12)

Examples:

ρ(|0〉) =

(
1 0
0 0

)
, ρ(|1〉) =

(
0 0
0 1

)
, ρ(|±〉) = ρ

( |0〉 ± |1〉√
2

)
=

1

2

(
1 ±1
±1 1

)
,

(13)

ρ(|00〉) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , ρ

( |00〉 ± |11〉√
2

)
=

1

2

⎛
⎜⎜⎜⎝

1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1

⎞
⎟⎟⎟⎠ , (14)

ρ

( |0〉 + |1〉√
2

|0〉 − |1〉√
2

)
= ρ

( |00〉 − |01〉 + |10〉 − |11〉
2

)
=

1

4

⎛
⎜⎜⎜⎝

1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

⎞
⎟⎟⎟⎠ .

(15)
Basis states have only a single nonzero (diagonal) element to their density matrices. A pure
state that is a superposition of basis states has nonzero off-diagonal elements to its density
matrix.
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Other properties of density matrices follow immediately: The square of the density op-
erator of a pure state is itself,

ρ2 = ρ (pure state). (16)

The trace of the density matrix is 1,

tr(ρ) =
∑

j

ρjj =
∑

j

ψjψ
�
j =

∑
j

∣∣ψj

∣∣2 = 1, (17)

since quantum states are normalized to unit probability. An alternative derivation of this is,

tr(ρ) = tr(|ψ〉〈ψ|) =
∑

j

〈j|ψ〉〈ψ|j〉 =
∑

j

〈ψ|j〉〈j|ψ〉 = 〈ψ|ψ〉 = 1. (18)

The time evolution of the density operator follows from (7) as,

ρ(t′) = |ψ(t′)〉〈ψ(t′)| = U(t, t′)|ψ(t)〉〈ψ(t)|U†(t, t′) = U(t, t′)ρ(t)U†(t, t′). (19)

The probability that state |ψ〉 is found in basis state |j〉 as the result of a measurement
follows from (9) as,

Pj = |〈j|ψ〉|2 = 〈ψ|j〉〈j|ψ〉 = 〈j|ψ〉〈ψ|j〉 = 〈j|j〉〈j|ψ〉〈ψ|j〉 =
∑

k

〈k|j〉〈j|ψ〉〈ψ|k〉

= tr(|j〉〈j|ψ〉〈ψ|) = tr(Pjρ), (20)

which is a special case of the general result for an operator O that,

〈ψ|O|ψ〉 = tr(Oρ). (21)

The expectation value 〈m〉 for a measurement of state |ψ〉 using operator M =
∑

j mj ·Pj =∑
j mj · |j〉〈j| follows from (21) as,

〈m〉 = 〈ψ|M|ψ〉 =
∑

j

mj〈ψ|Pj|ψ〉 =
∑

j

mjtr(Pjρ) = tr(Mρ). (22)

A.3 Density Matrix of a Mixed State

These results show that the density-matrix description of a pure quantum state recovers all
the features of the usual description. However, there does not yet appear to be any advantage
to the use of density matrices. That advantage lies in the ease with which the density-matrix
description can be extended to include so-called mixed states in which the quantum state is
one of a set of pure states |ψi〉 with probability Pi, where the total probability is, of course,
unity:

∑
i Pi = 1. In this case, we define,

ρ =
∑

i

Pi|ψi〉〈ψi| =
∑

i

Piρi (mixed state). (23)
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We readily set that the mixed-state density matrix (23) obeys all of the properties (17)-
(22). However,

ρ2 �= ρ (mixed state), (24)

which provides a means of determining whether a given density matrix describes a pure state
or a mixed state.

Example: A 50:50 mixture of states |00〉 and |11〉 has density matrix,

ρ =
1

2

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (25)

A mixture of basis states has no off-diagonal elements in its density matrix.
Example: A 50:50 mixture of states |0〉 and |1〉 has the same density matrix as a 50:50

mixture of states |+〉 and |−〉. From eq. (13) we have,

ρ =
ρ(|0〉) + ρ(|1〉)

2
=

ρ(|+〉) + ρ(|−〉)
2

=
1

2

(
1 0
0 1

)
=

I

2
. (26)

Indeed, a rotation Ry(φ) of basis states |0〉 and |1〉 by angle θ about the y-axis in Bloch
space3 leads to the new basis states cos θ

2
|0〉− sin θ

2
|1〉 and sin θ

2
|0〉+cos θ

2
|1〉. Hence, a 50:50

mixture of these new basis states also has density matrix (26).
A historic debate about the meaning of the quantum wave functions concerns whether

they reflect that Nature is intrinsically probabilistic or that the probabilities merely reflect
our ignorance of some underlying well-defined “reality”. We argue that a pure state is one for
which probabilities are intrinsic.4 In contrast, a mixed state (23) can be regarded as actually
being in one of its component pure states |ψi〉, but we don’t know which.5 The probabilities
Pi in eq. (23) summarize our ignorance/knowledge of which pure states are present, while the
coefficients ψj in eq. (6) represent intrinsic probabilities (strictly, probability amplitudes) as
to what can be observed of the pure state |ψ〉.

Mixed states and their density-matrix description are therefore useful in quantum statis-
tical mechanics in which we are ignorant of details of the state of our system or ensemble of
systems.

A.4 Density Matrix of a Composite System

The density-matrix description is also useful when dealing with a system for which we have
different qualities of information about its component subsystems.

Consider a system with two subsystems A and B for which the density matrix of the
whole system is ρAB. If our knowledge of system B is limited, we may wish to consider what
we can say about system A only. That is, we desire the density matrix ρA.

3See, for examples, prob. 4 of [7].
4For a recent review of the Kochen-Specker theorem [10] that a quantum-mechanical spin-1/2 state

cannot “really” have simultaneous definite values of its spin vector along three orthogonal axes, see [11].
5The example of eq. (26) reminds us that a given mixed-state density matrix corresponds to different

mixtures in different bases, so considerable quantum subtlety remains even for mixed states.
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The claim is that the appropriate procedure is to calculate,

ρA = trB(ρAB), (27)

where the trace over subsystem B can be accomplished with the aid of the definition,

trB(|A1B1〉〈A2B2|) = trB(|A1〉〈A2| ⊗ |B1〉〈B2|) = |A1〉〈A2| trB(|B1〉〈B2|)
= |A1〉〈A2| 〈B1|B2〉, (28)

recalling eq. (18).
If subsystems A and B have no nontrivial couplings, then ρAB = ρA ⊗ ρB, so that

tr(ρAB) = tr(ρA ⊗ ρB) = ρA tr(ρB) = ρA, as expected.
Of greater interest is the case when subsystems A and B are entangled. For example,

consider the entangled 2-qbits states described by the righthand case in eq. (14). To apply
eq. (28) it is easier to rewrite the density matrix (14) as a density operator,

ρAB

( |00〉 ± |11〉√
2

)
=

|00〉 ± |11〉√
2

〈00| ± 〈11|√
2

=
|00〉〈00| ± |00〉〈11| ± |11〉〈00| + |11〉〈11|

2
.

(29)
Then,

ρA = trB(ρAB) =
|0〉〈0| 〈0|0〉 ± |0〉〈1| 〈0|1〉 ± |1〉〈0| 〈1|0〉 + |1〉〈1| 〈1|1〉

2

=
|0〉〈0| + |1〉〈1|

2
=

1

2

(
1 0
0 1

)
=

I

2
. (30)

This noteworthy result helps us understand why Alice could not extract any information
about Bob’s observations of the second qbit of an entangled, but spatially separated 2-
qbit system, as considered in prob. 6(b) of [7], by her observation of the first qbit. Since
the two qbits are spatially separated, Alice is ignorant of the state of Bob’s qbit, and her
density-matrix description of the system is obtained by taking the trace over the second
qbit. Although the original system was prepared as a pure state, Alice’s knowledge of that
system is as if her qbit was prepared as a 50:50 mixed state of |0〉A and |1〉A. Nothing Bob
does changes Alice’s understanding of the first qbit, and when she measures it, she finds it
to be a |0〉 with 50% probability, or a |1〉 with 50% probability, independent of the history
of second qbit.

Skeptics, however, might infer from the result (30) that the claim (27) is incorrect. For
further justification of its validity, see Box 2.6, p. 107 of [8].6

A.5 Density Matrix of a Qbit

Show that the density matrix for a qbit can be written as,

ρ =
I + r · σ

2
, (31)

6The density-matrix explanation of why we cannot expect controversial results from observation of one
of two entangled subsystems could have been given by Bohr [12] as an answer to the EPR “paradox” [1] in
1935, but it was not. Some enthusiasts of EPR’s argument obliquely acknowledge the impact of the density
matrix by referring to it as the “destiny matrix”.
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where r is a real 3-vector with |r| ≤ 1, and the maximum holds only if the qbit is in a pure
state. What is the unit vector r̂ that corresponds to the pure state,

|ψ〉 = eiγ
[
cos

α

2
|0〉 + eiβ sin

α

2
|1〉
]
? (32)

The density matrix for a qbit is a 2 × 2 hermitian matrix whose trace is 1. So we can
write,

ρ =
I + A

2
, (33)

where matrix A is also hermitian, but with zero trace. Then, we have

A =

(
z b
c −z

)
= A† =

(
z� c�

b� −z�

)
. (34)

Therefore, z is real, and if b = x− iy then c = x+ iy, so that

A = x

(
0 1
1 0

)
+ y

(
0 −i
i 0

)
+ z

(
1 0
0 −1

)
= r · σ, (35)

where r = (x, y, z) is a real 3-vector. Thus,

ρ =
I + r · σ

2
, (31)

as claimed.
If this density matrix represents a pure state, then,

I + r · σ
2

= ρ = ρ2 =
I + 2 r · σ + (r · σ)2

4
=

I(1 + |r|2) + 2 r ·σ
4

, (36)

recalling that for and two ordinary vectors a and b,

(a · σ)(b · σ) = (a · b) I + i σ · a× b. (37)

Hence, |r|2 = 1 for a pure state.
If the density matrix represents a mixed state,

ρ =
∑

i

Pi|ψi〉〈ψi| =
∑

i

Piρi, (23)

then each of the component pure-state density matrices can be represented in the form (31)
with a corresponding unit vector r̂i. Thus, the vector r for the density matrix (23) obeys,

r =
∑

i

Pir̂i, where
∑

Pi = 1. (38)

Hence |r| ≤ 1, and the bound is achieved only if all r̂i are identical, in which case the density
matrix actually represents a pure state.
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For a pure state,

|ψ〉 = eiγ
[
cos

α

2
|0〉 + eiβ sin

α

2
|1〉
]
, (32)

the density matrix is,

ρ =

(
cos2 α

2
cosα sinαe−iβ

cosα sinαeiβ sin2 α
2

)

=

I +

(
cosα sinα(cosβ − i sinβ)

sinα(cosβ + i sinβ) − cosα

)

2
. (39)

From this we read off the components of r̂ as,

r̂ = (sinα cosβ, sinα sin β, cosα), (40)

which corresponds to a unit vector in the direction (α, β) in a spherical coordinate system
in Bloch space, consistent with the geometric interpretation of a qbit (as in prob. 4 of [7]).

A.6 Density Matrix of a Pair of Quantum Dots

One type of spatially encoded qbit consists of a pair of quantum dots [= regions in a thin sili-
con layer where electrodes define a potential minimum that can “trap” electrons (Earnshaw’s
theorem applies in three dimensions, but not in two)]; the states |0〉 and |1〉 are defined by
the presence of an electron on one or the other of the two quantum dots, as sketched in the
figure below (from [13]).

We can also think of a single spatially encoded qbit as consisting of a pair of qbits.
Suppose that state |0〉 (|1〉) corresponds to the presence of a particle in region A (B). Then
we can consider the first qbit to have the two states |0〉A and |vac〉A, where the “vacuum”
state occurs when there is no particle in region A. Similarly, the second qbit consists of the
two states |1〉B and |vac〉B. That is,

|0〉 = |0〉A|vac〉B, and |1〉 = |vac〉A|1〉B, (41)

The system AB also supports the 2-bit states |vac〉A|vac〉B and |0〉A|1〉B, but these are not
to be used for our spatially encoded qbit.

The density operator ρ for the pure states |±〉 = (|0〉A|vac〉B ± |vac〉A|1〉B)/
√

2 is,

ρ = |±〉〈±| =
|0〉A|vac〉B ± |vac〉A|1〉B√

2

〈0|A〈vac|B ± 〈vac|A〈1|B√
2

=
|0〉A〈0|A |vac〉B〈vac|B

2
+

|vac〉A〈vac|A |1〉B〈1|B
2

±|0〉A〈vac|A |vac〉B〈1|B
2

± |vac〉A〈0|A |1〉B〈vac|B
2

. (42)
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Taking the partial trace over subsystem B with the aid of eq. (28), we find,

ρA = trB(ρ) =
|0〉A〈0|A〈vacB|vacB〉

2
+

|vac〉A〈vac|A〈1B|1B〉
2

±|0〉A〈vac|A〈vacB|1B〉
2

+
|vac〉A〈0|A〈1B|vacB〉

2

=
|0〉A〈0|A〈vacB|vacB〉

2
+

|vac〉A〈vac|A〈1B|1B〉
2

=
I

2
. (43)

The pure state (42) of our spatially encoded qbit is an entangled state of the qbits of subsys-
tems A and B. However, from the perspective of an observer of subsystem A who is ignorant
of subsystem B, the state of A is given by eq. (43) which is a mixed state comprised of |0〉A
with 50% probability, and state |vac〉A with 50% probability.

The observation of a particle in region A allows the observer of that region to conclude
that the particle is not in region B, but this conclusion does not affect region B or a potential
observer thereof, who stills thinks that region might contain the particle if (s)ho has not yet
looked at it. If the second observer does not actually observe/measure region B, (s)he cannot
say that there is no particle there.

That is, the discussion of the pair of quantum dots as an entangled state (42) of two
qbits is essentially identical to the main discussion of this problem.

A.7 Density Matrices for Quantum Teleportation

Recall that in the circuit for quantum teleportation [14, 15], discussed in prob. 6(d) of [7],
Alice makes her measurements of bits |a〉 and |b〉 when the wave function of the system of
three qbits |a〉, |b〉 and |c〉 is,

|ψE〉 = α
|000〉 + |100〉 + |011〉 + |111〉

2
+ β

|010〉 − |110〉 + |001〉 − |101〉
2

, (44)

where the initial state of the qbit a was |a〉 = α|0〉 + β|1〉. The teleportation scheme is
represented in the sketch below, in which time flows from left to right.

We consider the reduced density matrix of the system at the intermediate time when
|ψ〉 = |ψE〉 from Bob’s point of view. Recall that Bob has only bit |c〉 at this time, so
his knowledge of the system is described by tracing over bits |a〉 and |b〉 in the full density
matrix. Note that at this time Bob does not have knowledge of the initial state of bit |a〉,
and must await receipt of Alice’s results of her measurements of bits |a〉 and |b〉 of |ψE〉
before he can reconstruct the initial state of |a〉.

To take the partial trace over bits |a〉 and |b〉, the appropriate version of the rule (28) is,

trAB(|A1B1C1〉〈A2B2C2|) = |C1〉〈C2| 〈A1B1|A2B2〉. (45)
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Since the bits |0〉c and |1〉c each appear in two of the basis states of eq. (44) that are multiplied
by α and in two that are multiplied by β, the Bob’s reduced density matrix simplifies to,

ρBob,E = trab(|ψE〉〈ψE|) =
|α|2 + |β|2

2
(|0〉〈0| + |1〉〈1|) =

I

2
. (46)

So, at the time when the state of the system is |ψE〉, Bob’s knowledge of the system, as
summarized in eq. (46) includes no information about the amplitudes α and β of the initial
state of bit |a〉.

Only after getting additional information from Alice (via communication at lightspeed
or less) can he convert his density matrix [at step I of the figure of the solution to prob. 6(d)
of [7]] to,

ρBob,I =

(
|α|2 αβ�

α�β |β|2
)

= (α|0〉 + β|1〉)(α�〈0| + β�〈1|). (47)

For completeness, we note that the density matrix that represents Alice’s knowledge only,
when the system is in state |ψ〉E , is,

ρAlice,E = trc(ρE) =
1

4

⎛
⎜⎜⎜⎝

1 2Re(αβ�) |α|2 − |β|2 2Re(αβ�)
2Re(αβ�) 1 2iIm(αβ�) |α|2 − |β|2
|α|2 − |β|2 −2iIm(αβ�) 1 −2Re(αβ�)
2Re(αβ�) |α|2 − |β|2 −2Re(αβ�) 1

⎞
⎟⎟⎟⎠ , (48)

which has nontrivial off-diagonal elements that contain information as to the initial state
|a〉 = α|0〉 + β|1〉.
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