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1 Problem

Consider an electric dipole d = ql,1 with electric charges ±q separated by distance l where
l = |l| is constant, in an external magnetic field B that is quasistatic. First discuss the
electromagnetic-field momentum supposing the dipole is at rest, and then consider that the
dipole is slowly moving.

2 Solution

This problem is closely related to the case of a capacitor in a magnetic field, which is discussed
in [1]. An electric dipole in a magnetic field is the electromagnetic dual of a magnetic dipole
(current loop) in an electric field, which is discussed in [2].

2.1 Electric Dipole at Rest in a Static, Uniform Magnetic Field

An electric dipole at rest (in an inertial frame) in a static, uniform magnetic field is an
example of a system “at rest”, for which the total 3-momentum of the system is zero.2

However, the electromagnetic-field momentum of this system is nonzero.
The contemporary view of (classical) electromagnetic-field momentum dates back to dis-

cussion in 1891 by J.J. Thomson,3 that the “field-only” momentum4 is (in Gaussian units)

PEM =

∫
E × B

4πc
dVol, (1)

where E is the electric field, B is the magnetic field and c is the speed of light in vac-
uum. In quasistatic examples, such as the present case, alternative expressions for the
electromagnetic-field momentum can be given [7], including the version favored by Maxwell,

P
(M)
EM =

∫
ρA(C)

c
dVol, (2)

1Electric dipoles are often represented by the symbol p, but in this note there is emphasis on 3-
momentum, which we will denote by the vector p in accordance with common usage, perhaps derived
from the Greek pteron (πτερoν , wing) or pero (περω, to fly).

2See, for example, Appendix A of [3], which is based on discussion in [4].
3See, for example, Sec. 1 of [5], and references therein.
4When electromagnetic media are involved, one considers the electromechanical fields D and H, which

leads to “perpetual” debates as to whether E × B should be replaced by E × H or by D × B. See, for
example, [6].
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where ρ is the density of electric charge and A(C) is the magnetic vector potential in the
Coulomb gauge (where ∇ · A(C) = 0).

For the present example, we consider a static, uniform magnetic field B = B0 ẑ whose
source is axially symmetric about the z-axis, such that the Coulomb-gauge vector potential
can be written as5

A(C) =
B × x

2
. (5)

Then, for an electric dipole d = ql with charges ±q at x0 ± l/2, the electromagnetic-field
momentum is6,7

P
(M)
EM =

1

2c
qB0 ẑ ×

(
x0 +

l

2

)
− 1

2c
qB0 ẑ ×

(
x0 − l

2

)
=

B0 ẑ × ql

2c
=

B × d

2c
. (6)

As the total momentum of a system at rest is zero, the present system must contain a
mechanical momentum equal and opposite to that of eq. (6), which has come to be called a
“hidden” momentum (following [8]),

Phidden = −B × d

2c
=

d× B

2c
. (7)

The “hidden” mechanical momentum8 does not reside in the electric dipole, but in the
conduction current that is the source of the magnetic field B. This is a “relativistic” effect
associated with the variation with position of the relativistic momentum γmv of the charge
carriers as affected by the electric field of the electric dipole. See, for example, [2].

Such “hidden” mechanical momentum can also exist in systems with nonzero total mo-
mentum, where it is typically negligible compared to the total momentum.

5We confirm that for a uniform magnetic field B,

∇ ·A(C) = ∇ · B× x
2

=
B
2
·∇ × x− x

2
· ∇ × B = 0, (3)

and

B = ∇ × A(C) = ∇ × B× x
2

=
B
2

∇ · x − x
2

∇ · B + (x · ∇)B− (B · ∇)x =
3B0 ẑ

2
− 0 + 0 − B0 ẑ

2
= B0 ẑ = B. (4)

6The result (6) was confirmed in Sec. 2.4 of [1] using eq. (1) for the special case of a spherical capacitor
inside a spherical magnet, for which the computation of

∫
E× B dVol is tractable. See also Sec. IV of [9].

7The electromagnetic-field momentum of a magnetic dipole m in an external electric field E was computed
using both our eqs. (1) and (2) by J.J. Thomson [10, 5] to be PEM = E × m/c. This case might seem to
be the electromagnetic dual of an electric dipole in an external magnetic field, which casts doubt on the
factor of 2 in the denominator of eq. (6). However, the duality transformation takes electric charges and
currents into magnetic charges and currents, which latter do not exist so far as we know. Hence, we cannot
use the duality transform of Thomson’s result to infer that the field momentum of an electric dipole (based
on electric charges ±q) in a magnetic field (based on electric currents as per Ampère, and not on magnetic
charges) would be B × d/c.

8As discussed in [3], the electromagnetic field momentum (1) can also be called a “hidden” momentum.
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2.2 The System is in Quasistatic Motion

We now suppose the system of electric dipole d = ql plus external magnetic field B includes
motion of the dipole, space and time dependence of the magnetic field, as well as a possible
external electric field E, where the motion is quasistatic such that radiation can be ignored.

We begin by consideration of the (Lorentz) force on the dipole (using an argument due
to Bruno Klajn, private commnication),

FLorentz = q
(
E+ +

v+

c
× B+

)
− q

(
E− +

v−
c

× B−
)

= q(l · ∇)
(
E +

v

c
× B

)
+

q

c

dl

dt
× B

= (d · ∇)
[
E +

(v

c
× B

)]
+

1

c

dd

dt
× B

= ∇
[
d · E + d ·

(v

c
× B

)]
− d×

[
∇×

(
E +

v

c
× B

)]
+

1

c

dd

dt
× B

= ∇
[
d · E +

(
d × v

c

)
·B

]
− d×

[
−1

c

∂B

∂t
+

v

c
(∇ · B) −

(v

c
· ∇

)
B

]
+

1

c

dd

dt
× B

= ∇(d · E + m · B) +
d

c
× dB

dt
+

1

c

dd

dt
× B = −∇Uint +

d

dt

(
d

c
× B

)
, (8)

where E, B and v refer to quantities at the center of the electric dipole d, the apparent
magnetic moment of a moving electric dipole is m = d× v/c is to lowest order in v/c,9 the
convective derivative is dB/dt = ∂B/∂t + (v · ∇)B, the interaction energy of an electric
dipole d in an external electric field E and of a magnetic dipole m in an external magnetic
field B is Uint = −d ·E−m ·B, and we presume that ∇ does not act on the length l of the
electric dipole.

We also have that the force on the electric dipole is the time rate of change of the total
(mechanical) momentum, Pd = mv + Phidden, of the dipole,

dPd

dt
= FLorentz = −∇Uint +

d

dt

(
d

c
× B

)
, (9)

d

dt

(
Pd +

B × d

c

)
= −∇Uint ≈ d

dt
(Pd + PEM − Phidden) =

d

dt
(mv + PEM) , (10)

in the approximation that the electromagnetic-field momentum and “hidden” mechanical
momentum are the same as for the system at rest and in quasistatic motion.

The interpretation of eq. (10) is awkward. Neither the electromagnetic field momentum
PEM nor the “hidden” mechanical momentum Phidden are solely properties of the electric
dipole d; rather, they are properties of the system as a whole. Klajn proposes that the term
B×d/c be called a “potential momentum”, but that name is more commonly associated with
the electromagnetic-field momentum PEM,10 which is ≈ B × d/2c in the present example.11

Note that the last form of eq. (10) is consistent with calling PEM a “potential momentum”.

9See, for example, [11].
10For a review of “potential momentum”, see, for example, Sec. III of [12].
11That the field momentum in the quasistatic case is not necessarily B× d/2c is discussed in [13, 14].
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For what it’s worth, we can write a Lagrangian for the “particle” with mass m and
velocity v that interacts with external electric field E and magnetic field B when v � c as12

L =
mv2

2
− Uint =

mv2

2
+ d · E + m · B =

mv2

2
+ d ·

(
E +

v

c
× B

)
. (11)

Then,

∂L
∂v

= mv +
B × d

c
= Pd +

B × d

c
,

∂L
∂x

= −∇Uint, (12)

such that (d/dt)(∂L/∂v) = ∂L/∂x leads to eq. (10). We recognize ∂L/∂v = Pd + B × d/c
as the canonical momentum of this example, which differs from the mechanical momentum
Pd of the electric dipole by the term B × d/c, which happens to be twice the (approxi-
mate) electromagnetic-field momentum (6) of the system. There is no general name for such
differences between a canonical momentum and a mechanical momentum.

Some controversy about the quasistatic case of the present example arose in 2014 via an
eprint by Hu [14]. The author made some remarks on this in footnotes 6, 8, 10 and Appendix
B.2 of [1].
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