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1 Problem

A well-known result of electrostatics is that the energy of an electric dipole of moment m of
fixed magnitude |m| in an external electric E0 is given by,

Uint = −m · E0. (1)

This expression can, for example, be deduced from the general prescription for the energy
of interaction of a charge density ρ in and external electric potential φ0, namely that,

Uint =

∫
ρφ0 dVol. (2)

A useful abstraction from a charge distribution with a net dipole moment is the concept of
a point dipole consisting of a pair of charges ±q separated by a small distance d such that
we may take the limit as d → 0 and q → ∞ while the product qd = m remains constant.
Then, the electric field of the point dipole can be written (in Gaussian units) as,

E =
3(m · r̂)r̂ − m

r3
− 4π

3
m δ3(r), (3)

where the position vector r is measured with respect to the center of the point dipole. The
meaning of the delta function in eq. (3) is discussed, for example, in sec. 4.1 of [1].

An important contribution of Faraday and Maxwell to electrodynamics was their empha-
sis on the electromagnetic fields as primary physical concepts. A consequence is that the
electrical energy of a system can be calculated as an integral of the electric field rather than
of charges and potentials as in eq. (2). In particular, the energy of interaction of charges
that create a field E with an external electric field E0 can be written as,

Uint =

∫
E · E0

4π
dVol. (4)

The paradox concerns the use of eq. (4) for the interaction energy of a point dipole (3)
in a uniform external electric field. In this case, we find,

Uint =
E0

4π
·
∫

E dVol = −1

3
m · E0, (5)

in that the angular integral of 3(m · r̂)r̂− m at a fixed radius r vanishes.
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2 Solution

2.1 Electric Dipole

The paradox may have something to do with the use of an idealized point dipole.1 So, we
first consider the case of an electric dipole consisting of a pair of charges ±q separated by a
finite distance d, where m = qd is the dipole moment. The electric field of the dipole can
be written as,

E = Eq + E−q. (6)

Using this in eq. (4), we calculate the interaction energy of this dipole in a uniform external
field E0 to be,

Uint =
E0

4π
·
∫

E dVol =
E0

4π
·
(∫

Eq dVol +

∫
E−q dVol

)
= 0, (7)

since the volume integral of field of charge q is surely equal and opposite to that of charge
−q.

We now appear to be in even greater difficulty than before, with Maxwell’s expression
for field energy predicting that there is no interaction energy for a real dipole in a uniform
field!

However, on reflection, we realize that the vanishing of the interaction energy in eq. (7)
depends on the cancelation of large quantities that are far separated in space, and in reality
the cancelation may not be exact. For example, the volume integral of Ez due to charge q
can be calculated in a spherical coordinate system (r, θ, ϕ) centered on the charge as,

∫
Ez dVol = 2π

∫ ∞

0

r2 dr

∫ 1

−1

d cos θ
q cos θ

r2
= 2πq

∫ ∞

0

dr

∫ 1

−1

cos θ d cos θ. (8)

The integrand has the same value in any element dr d cos θ at a fixed angle θ independent
of r. The contributions to the integral from such elements is independent of their distance r
from charge. While the integral (7) is zero mathematically, we cannot say this is true in the
physical universe with confidence. In particular, we see that the interaction energy vanishes
only if the external field is uniform throughout the entire universe.

That is, the implausible result (7) may be due to the unrealistic assumption of a perfectly
uniform electric field E0 throughout all space.2 Perhaps the form (1) can be recovered by
considering electric fields from bounded distributions of electric charges, which fields are
sufficiently uniform in the vicinity of the electric dipole m.

1Other paradoxes in the discussion of point dipoles are discussed in [2].
2Also, the transformation from eq. (2) to eq.(4) involves an assumption about the behavior at infinity,

Uint =
∫

ρφ0 dVol = −
∫ ∇ · E

4π
φ0 dVol = −

∫
E · ∇φ0

4π
dVol−

∫ ∇ · Eφ0

4π
dVol

=
∫

E · E0

4π
dVol−

∮
Eφ0 · dArea

4π
. (9)

The potential φ0 at infinity is large for a mathematically uniform field, such that the surface integral cannot
be neglected, and eq. (4) does not hold. Whereas, the potential φ0 from any bounded charge distribution
vanishes at infinity, and eq. (4) is valid in this case.
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To explore this, we suppose that the external field E0 is created by some set of charges
suitably remote from the dipole. Since the form (4) is linear in E0, it suffices to imagine
this field as being created by a single charge Q at large distance R from the dipole such that
Q = E0R

2. While charge Q creates a field EQ that is essentially uniform near the dipole,
this field is by no means uniform throughout the entire universe, and eq. (7) will no longer
yield zero for the interaction energy.

We verify this using the geometry shown in the figure below, where,

1

R′ =
1√

R2 + d2 + 2Rd cos θ
≈ 1

R

(
1 − d

R
cos θ +

d2

2R2
(3 cos2 θ − 1) + · · ·

)
. (10)

In Appendix A we confirm that Maxwell’s expression (4) for field energy can be used
to calculate the interaction energy U12 = qq′/D between a pair of point charges separated
by distance D. Therefore, we calculate the interaction energy of the “external” field due to
charge Q with the dipole shown in the figure above to be,

Uint =

∫
E0 · E

4π
dVol =

∫
E0 · Eq

4π
dVol +

∫
E0 · E−q

4π
dVol =

qQ

R′ − qQ

R

≈ qQ

R

(
1 − d

R
cos θ +

d2

2R2
(3 cos2 θ − 1) + · · · − 1

)

= −qdQ cos θ

R2
+

qd2Q(3 cos2 θ − 1)

2R3
+ · · · = −m · E0 +

d

R
mE0

3 cos2 θ − 1

2
+ · · ·(11)

Thus, the departure of the interaction energy from −m ·E0, where E0 is the external electric
field at the center of the electric dipole m, is of order d/R, the ratio of the size of the
dipole to it distance from the sources of the external electric field. We can say that the form
(1) follows from the field energy (4) for external electric fields that are not mathematically
uniform, but which are “sufficiently uniform” at the location of the electric dipole.

However, we have not completely resolved the paradox. The question remains as to
whether the delta-function term in eq. (3) for the dipole field E should be included when
using eq. (4) for a “sufficiently, but not perfectly” uniform field E0

2.1.1 Example: Sphere with a cos θ Surface Charge Density

A sphere of radius a with a surface charge density,

σ0 = −E0

4π
cos θ, (12)
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has interior electric field E0 = E0 ẑ, and exterior field the same as for an electric dipole
moment m0 = −E0a

3 ẑ/3.3 The electric potential of the uniform field inside the sphere is,

φ0(r < a) = −E0z. (13)

When electric dipole m = qd m̂ is at the origin, inside the field E0, its interaction energy
according to eq. (2) is,

Uint = q

(
−E0

d

2
cos θ

)
− q

(
−E0

−d

2
cos θ

)
= −qdE0 cos θ = −m · E0, (14)

where θ is the angle of dipole m with respect to the z-axis.
To verify that eq. (4) can also be used to compute the interaction energy, we simplify to

the case that the magnetic dipole m is aligned along the z-axis, for which we expect that
Uint = −mE0. For this case, with the field E of the electric dipole given be eq. (3),

Uint =

∫
E · E0

4π
dVol =

∫
r<a

E · E0

4π
dVol +

∫
r>a

E · E0

4π
dVol

=
mE0

4π

∫
r<a

(
3cos2θ − 1

r3
− 4π

3
δ3(r)

)
dVol − mE0a

3

4π

∫
r>a

(2cosθ r̂ + sin θ θ̂)2

r6
dVol

= −mE0

3
− mE0a

3

2

∫ ∞

a

dr

r4

∫ 1

−1

d cos θ (3 cos2 θ + 1) = −mE0, (15)

as expected.
In achieving the expected result, it was necessary to include the delta-function term in

the field (3) for a “point” electric dipole. This reaffirms that eq. (4) can be used to compute
the electric interaction energy between an electric dipole and an “external” field due to a
bounded distribution of electric charge, using the full from eq. (3) for the field of the dipole.
In contrast, the form (4) is not applicable to the idealized case that the “external” field is
mathematically uniform.

2.2 Magnetic Dipole

The magnetic interaction energy of two electrical currents that occupy different volumes, in
media with unit realtive permability, can be written in terms of the magnetic fields, say B
and B0, as,

Uint =

∫
B · B0

4π
dVol. (16)

If, the first of these currents is well described as a magnetic dipole with moment m =
IArea/c, then the interaction energy is also written as (see, for example, sec. 5.7 of [1]),

Uint = −m · B0, (17)

supposing that the “external” field B0 is “suficiently uniform” over the magnetic dipole.

3These results can be inferred from eqs. (4.55)-(4.58) of [1].
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We recall that in the case of a magnetic dipole m, the magnetic field can be written (see,
for example, sec. 5.6 of [1]),

B =
3(m · r̂)r̂ − m

r3
+

8π

3
m δ3(r). (18)

Then, via an argument similar to that associated with eqs. (4)-(5), use of eqs. (16) and (18)
for the case of a uniform field B0 appears to imply that,

Uint =
2

3
m · B0, (19)

rather than eq. (17), and that if we neglect the delta-function term in eq. (18), the interaction
energy (16) would be zero.

Additional comments on magnetic dipoles are given in Appendix B.

A Appendix: The Interaction Energy of Two Point

Electric Charges

We verify that eq. (4) can be used to calculate the interaction energy U12 = qq′/d of two
point charges q and q′ that are separated by distance d, taking E to be the field of charge q
and E0 = E′ to be that of charge q′.

We calculate in a spherical coordinate system (r, θ, ϕ) whose origin is at charge q and
whose z axis points towards charge q′, as shown in the figure below.

By the law of cosines we have,

r′ =
(
r2 + d2 − 2rd cos θ

)1/2
, (20)

and also,

cos α =
r2 + r′2 − d2

2rr′
=

r − d cos θ

r′
. (21)

The interaction energy of the two charges is,

U12 =

∫
E · E′

4π
dVol =

∫
qq′ cosα

4πr2r′2
dVol =

qq′

2

∫ ∞

0

dr

∫ 1

−1

d cos θ
r − d cos θ

(r2 + d2 − 2rd cos θ)3/2

=
qq′

2

∫ ∞

0

dr

[(
1

|r − d| −
1

r + d

) (
1

2d
− d

2r2

)
− 1

2r2d
(|r − d| − r − d)

]

=
qq′

2

∫ d

0

dr

[(
1

d − r
− 1

r + d

)
r2 − d2

2r2d
+

1

rd

]
+

qq′

2

∫ ∞

d

dr

[(
1

r − d
− 1

r + d

)
r2 − d2

2r2d
+

1

r2

]

= qq′
∫ ∞

d

dr

r2
=

qq′

d
. (22)
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Note how the contribution to the energy U12 at distances r < d vanishes, and the energy
is accounted for in Maxwell’s view entirely by the contribution for r > d, i.e., at relatively
large distances.

B Further Comments on Magnetic Dipoles

B.1 Gilbertian Magnetism

Human awareness of magnetism came earlier than that of electricity. In 1269, Peregrinus [3]
conluded from experiment that a (permanent) magnet has two “poles,” and that like poles of
different magnets repel, while unlike poles attract. In 1600, Gilbert published a treatise [4],
which includes qualitative notions of magnetic energy and lines of force.4 In 1785, Coulomb
confirmed (and made widely known) that the static force pairs of electric charges q1 and
q2 varies as q1q2/r

2 [5], and that the force between idealized magnetic poles p1 and p2 at
the ends of long, thin magnets varies as p1p2/r

2 [6].5 The electric and magnetic forces were
considered to be unrelated, except that they obeyed the same functional form.

Coulomb also noted that magnetic poles appear not to be isolatable, conjecturing (p. 306
of [7]) that the fundamental constituent of magnetism, a molécule de fluide magnétique, is
a dipole, such that effective poles appear at the ends of a long, thin magnet.

B.2 Ampèrian Magnetism

In 1820, Ørsted [11, 12] published decisive evidence that electric currents exert forces on
permanent magnets, indicating the electricy and magnetism are related.6 Ørsted’s term
“electric conflict,” used in his remarks on p. 276 of [12], is a precursor of the later concept
of the magnetic field.

4Then, as now, magnetism seems to have inspired claims of questionable merit, which led Gilbert to
pronounce on p. 166, “May the gods damn all such sham, pilfered, distorted works, which do but muddle
the minds of students!”

5The 1/r2 law for the force between magnetic poles had been stated earlier by Michell [8, 9] and by
Priestly [10].

6Reports have existed since at least the 1600’s that lightning can affect ship’s compasses (see, for example,
p. 179 of [13]), and an account of magnetization of iron knives by lightning was published in Phil. Trans.
in 1735 [14]. In 1797, von Humboldt conjectured that certain patterns of terrestrial magnetism were due
to lighting strikes (see p. 13 of [15], a historical review of magnetism). A somewhat indecisive experiment
involving a voltaic pile and a compass was performed by Romagnosi in 1802 [16].
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It is sufficiently evident from the preceding facts that the electric conflict is not confined to
the conductor, but dispersed pretty widely in the circumjacent space. From the preceding
facts we may likewise infer that this conflict performs circles.

Between 1820 and 1825 Ampère made extensive studies [17, 18, 19, 20, 21, 22] of the
magnetic interactions of electrical currents.7 Already in 1820 Ampère came to the vision
that all magnetic effects are due to electrical currents.8,9

B.3 Interaction Energy of Electric Currents

The magnetic interaction energy of two electrical currents that occupy different volumes, in
media with unit relative permeability, was first considered by Neumann, sec. 11 of [32],10

Uint =

∮
1

∮
2

I1 dl1 · I2 dl2
c2r

. (23)

We now also write this as11

Uint =

∮
i

Ii dli ·Aj

c
, Aj =

∮
j

Ij dlj
cr

. (24)

With the change of notation the (static) current I1 is I , and that (static) current I2 is
I0, the interaction energy of the two circuits is

Uint =

∮
I dl · A0

c
=

∫
J · A0

c
dVol =

∫
(∇ × B) · A0

c
dVol

=

∫
(∇ ×A0) ·B

4π
dVol +

∫ ∇ · (B × A0)

4π
dVol

=

∫
B · B0

4π
dVol +

∮
B× A0 · dArea

4π
=

∫
B · B0

4π
dVol, (25)

where J is the current density corresponding to the electric current I , and we suppose that
the vector potential A0 falls off sufficiently fast at infinity. However, the if magnetic field
B0 is mathematically uniform, and along the z-axis, then A0 = 
B0 φ̂/2 in a cylindrical
coordinate system (
, φ, z), and the surface integral in eq. (25) cannot be neglected. Hence,
eq. (25) does not hold in case of a mathematically uniform magnetic field B0, just as eq. (4)
does not hold for a mathematically uniform electric field E0.

7An extensive discussion in English of Ampère’s attitudes on the relation between magnetism and me-
chanics is given in [23]. A historical survey of 19th-century electrodynamics is given in [24]; another survey
[25] gives little credit to Ampère. See also [26], sec. IIA regarding Ampère.

8See, for example, [27].
9The confirmation that permanent magnetism, due to the magnetic moments of electrons, is Ampèrian

(rather than Gilbertian = due to pairs of opposite magnetic charges) came only after detailed studies of
positronium (e+e− “atoms”) in the 1940’s [28, 31].

10If we write eq. (23) as Uint = I1I2M12, then M12 is the mutual inductance of circuits 1 and 2. Neumann
included a factor of 1/2 in his version of eq. (23), associated with his choice of units.

11Neumann is often credited with inventing the vector potential A, although he appears not to have
factorized his eq. (23) into eq. (24).
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B.4 Interaction Energy of an Ampèrian Magnetic Dipole, I

For current density J due to a small loop of electric current I with area dArea in an external
magnetic field B0 = ∇ × A0, eq. (24) gives,

U
(I)
int =

∮
I dl · A0

cr
=

∫
IdArea

c
· ∇ ×A0 = m · B0 (26)

noting that the magnetic dipole of the small current loop is m = I dArea/c.

If we wish to use the interaction energy U
(I)
int to discuss the force on the magnetic dipole,

we must note that the above derivation tacitly assumed that the electric currents were kept
constant as the two circuits (two magnetic dipoles) were brought in from infinity. Some sort
of “batteries” are required to maintain the constant currents, and these batteries do work
as the circuits are moved. Indeed, this work is −2U

(I)
int , such that the force on a circuit with

magnetic moment m is,

F = −∇Utotal = ∇U
(I)
int = ∇(m · B0). (27)

B.5 Interaction Energy of Gilbertian Magnetic Dipoles

In 1860, Tait [33] used a model of magnetic dipoles as pairs of opposite magnetic poles to
deduce that the interaction energy Uint of a pair of magnetic dipoles m1 and m2 is,

Uint =
m1 · m2 − 3(m1 · r̂)(m1 · r̂)

r3
= −m1 · B21 = −m2 · B12, (28)

where r is the vector from the center of one dipole to the center of the other, and,

Bij =
3(mi · r̂)(mi · r̂)

r3
− 4πmi

3
δ3(r) (Gilbertian) (29)

is the magnetic field due to (Gilbertian) dipole i at the location of dipole j.12

Equation (28) suggests that the interaction energy of a magnetic dipole m in an external
magnetic field B0 has the form,

U
(II)
int = −m · B0, (30)

B.6 Interaction Energy of an Ampèrian Magnetic Dipole, II

If the magnetic dipole is associated with Ampèrian electric currents, then the magnetic field
has the form (see, for example, sec. 5.6 of [1]),

Bij =
3(mi · r̂)(mi · r̂)

r3
+

8πmi

3
δ3(r) (Ampèrian), (31)

which makes no difference to the interaction energy (28). This suggests that the interaction
energy (30) also holds for an Ampèrian magnetic dipole in an external magnetic field.

12Of course, Tait used only the magnetic field H in 1860, prior to the introduction of the field B in 1871
by W. Thomson, pp. 398-402 of [34].
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A derivation of eq. (30) based on the assumption of an Ampèrian magnetic dipole proceeds
by consideration of the force F = −∇Uint when the magnetic moment m is held constant.
Then, from the Biot-Savert law (and a version of Stokes’ theorem) for a loop of electrical
current I with magnetic momentum m = IArea/c,

F =
I

c

∮
dl×B0 =

I

c

∫
∇(dArea·B0)− I

c

∫
(∇·B0) dArea = ∇(m·B0) = −∇U

(II)
int . (32)

Comparing with sec. B.4, we see that the consideration of the Biot-Savart law in the
present section leads us to an interaction energy that includes the energy associated with
maintaining constant currents/dipole moments, if that is indeed the case, while that of
sec. B.4 only included the energy of the magnetic field.

B.7 Interaction Energy of an Ampèrian Magnetic Dipole, III

Yet another scenario is of interest, in which a permeable medium with zero conduction
current is brought into an “external” field B0 that is maintained by fixed currents.

We consider a small element in the permeable medium, with magnetic moment m = χB0,
where χ < 0 corresponds to a diamagnetic moment and χ > 0 is a paramagnetic moment.
From the use of Stokes’ theorem in eq. (32), we see that the operator ∇ is not meant to act
on the dipole m in ∇(m ·B0) = (m ·∇)B0 +m× (∇×B0). Rather, for m = χB0 we have,

∇(m · B0) = χ∇(B2
0) = 2χ[(B0 · ∇)B0 + B0 × (∇ × B0)] = 2[(m · ∇)B0 + m × (∇× B0)]

= 2F. (33)

Hence, the force on the magnetic dipole element of the permeable medium can be written
as,

F =
χ

2
∇(B2

0) = −∇U
(III)
int , with U

(III)
int = −m · B0

2
= −χB2

0

2
. (34)

in terms of a third form of an interaction energy, U
(III)
int . This last result is deduced by rather

different arguments in eq. (32.8) of [29], where B0 is written as H.
The first form of the force in eq. (33) implies that paramagnetic objects are pulled into

regions of stronger magnetic field, while diamagnetic objects are driven to regions of weaker
field, as noted by Faraday in Art. 2269 of [30], in which he first identified diamagnetism.

B.8 Force on a Moving Magnetic Dipole

The results above strictly apply only to a magnetic dipole at rest. For discussion of the force
on a moving magnetic dipole, see sec. 2.6 of [31].
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Ann. Chem. Phys. 20, 60 (1822),
http://kirkmcd.princeton.edu/examples/EM/ampere_acp_20_60_22.pdf
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