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This note gathers together material from my Ph529 Lecture 6,1 and my Ph406 Problem
Sets 4, 9 and 12.2

1 The 4-Spinor Dirac Equation

In 1928, Dirac [1] sought a relativistic wave equation for spin-1/2 particles that would be
a first-order differential equation, in contrast to the Klein-Gordon equation [2, 3] for spin-0
particles with is second order. He found this could not be done with ordinary wave functions,
but rather 4-component (spinor) wave functions were required. These are a generalization
of the 2-component spinors introduced by Pauli (1927) [4] in the non-relativistic quantum
mechanics of spin-1/2 particles.3

Relativity + 1st-order differential wave equation ⇒ spin!
Dirac 4-spinors ψ for a spin-1/2 particle (or antiparticle) of mass m in free space obey

Dirac’s equation,

iγμ∂μψ = mψ, (1)

in units with c = 1 = �. The derivative operator is,

∂μ =

(
∂

∂t
,−∇

)
, and γμ∂μ = γ0∂0 −

3∑
i=1

γi∂i = γ0

∂

∂t
+ γ · ∇, (2)

and ψ is an object consisting of four complex numbers,

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3)

and the 4 × 4 matrices γμ, μ = 0, 1, 2, 3, i.e., γμ = (γ0,γ) with γ = (γ1, γ2, γ3), have the
anticommutation relations,

γμγν + γνγμ = 2ημνI4
[⇒ (γ0)2 = I4, (γi)2 = −I4

]
, (4)

1http://kirkmcd.princeton.edu/examples/ph529/ph529l6.pdf
2http://kirkmcd.princeton.edu/examples/ph406/ph406_set4_2014_sol.pdf

http://kirkmcd.princeton.edu/examples/ph406/ph406_set9_2014_sol.pdf
http://kirkmcd.princeton.edu/examples/ph406/ph406_set12_2014_sol.pdf

3The term spinor was invented by Ehrenfest (∼1929), as quoted in [5].
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where the diagonal matrix ημν has diagonal elements 1,−1,−1,−1, and I4 is the unit 4 × 4
matrix. The Einstein summation convention is used for repeated indices in equations, with
the sense that a b = aμb

μ = a0b
0 − a · b and aμ = aμ = (a0, a).

A particular representation of the γ-matrices was given by Dirac [1],4,5

γ0 =

⎛
⎝ I2 0

0 −I2

⎞
⎠ , γi =

⎛
⎝ 0 σi

−σi 0

⎞
⎠ , γ5 = iγ0γ1γ2γ3 =

⎛
⎝ 0 I2

I2 0

⎞
⎠ , (5)

where I2 is the 2 × 2 unit matrix, and σj, j = 1, 2, 3 are the Pauli spin matrices [4],6

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (σj)

2 = I2, σjσk = iεjkl σl.

(6)
As usual, we define the Pauli “spin vector” σ as the triplet of matrices σ = (σ1, σ2, σ3).

The Dirac representation (5) will be used throughout most of this note, with occasional
use of a Weyl (chiral) representation [10]. Some alternatives are listed in the Appendix.

1.1 Feynman Slash Notation

The product of a 4-vector aμ with the matrix 4-vector γμ occurs so often that Feynman
introduced a special notation (easily implemented on manual typewriters via the backspace
key),

/a ≡ aμγ
μ. (7)

With this notation, the Dirac equation (1) can be written as,

/P ψ = mψ, (8)

if we also define the operator Pμ ≡ i∂μ.
Then,

/P /P ψ = /P (mψ) = m2ψ = p2 ψ, (9)

where pμ = (E,p) is the energy momentum 4-vector of the particle described by ψ.
We also note that,

/a b/ = aμγ
μ bνγ

ν = −bνγν aμγ
μ + 2ημνaμbν = b/ /a + 2ab, (10)

using eq. (4). In particular, /P /P = P 2, (11)

which is formally consistent with eq. (9) on taking P 2ψ = p2ψ.

4We follow the notation of sec. 2.1 of [6], which is also used in [7].
5The concept of a fifth γ-matrix, now called γ5, is due to Eddington [8, 9].
6The σj are both hermitian, σ†

j = (σ∗
j )

T = σj, and unitary, (σ∗
j )

T σj = (σj)2 = I2, where T means
transpose.
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2 Plane-Wave States

We restrict our discussion of Dirac’s equation to the plane-wave solutions needed for scat-
tering problems. We seek solutions of the form,

ψ = u e−i p x = u e−i pμxμ

, (12)

with rest mass m, 3-momentum p, energy E =
√
p2 +m2, and 4-momentum p = pμ =

(E,p). The 4-spinor u does not depend on x = xμ = (t,x).
First, we consider the case of a particle at rest, pμ = (E, 0). Then, /Pψ = mψ reduces to

Eγ0 u = mu. This simplest 4-spinors are,

u1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, u2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, u3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, and u4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (13)

Recall from eq. (5) that,

γ0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (14)

Hence, for spinors u1 and u2 we have E = m, but for spinors u3 and u4 we find E = −m
which are examples of the famous negative-energy solutions to the Dirac equation. The
negative-energy states are troublesome in that they could emit light, dropping to a more
negative energy, and then emit more light...

We readily interpret u1 and u2 as the spinors for the spin up and spin down states, with
respect to the z axis, of a spin-1/2 particle at rest.

Dirac gave a prophetic interpretation of the “negative-energy” states u3 and u4 by means
of a “hole theory”.7 He argued that the “vacuum” consists of a “sea” of negative-energy
particles (dark energy?), occupying all possible negative-energy states. This conveniently
prohibits any of the paradoxical radiative transitions. Of course, we have to ignore the
infinite (negative) energy and charge of this “sea” (in a type of “renormalization” that Dirac
later came to abhor).

7Dirac interpreted electron “hole” states as protons in [11], and as what are now called positrons in [12].
The later paper also introduced the Dirac magnetic monopole. Positrons were later interpreted by Wheeler
(1941), Stueckelberg [13, 14] and Feynman [15, 16] as electrons moving backwards in time. See also [18].
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Transitions from the negative-energy sea are pos-
sible if enough energy is added. For example,
a photon of energy Eγ > 2m could promote a
negative-energy electron across the “gap” into the
realm of free electrons. This would leave a “hole”
in the negative energy sea. Dirac interpreted the
hole as a positively charged particle. The hole
could then move around in the negative-energy
sea, obeying laws for a positive energy state. To a
laboratory observer, the “positron” would be very
real.

If an electron collided with a hole/positron, both could disappear in a flash of light, of
energy equal to that of the electron + positron.

Spinor u3 corresponds to a spin-up, negative-energy electron at rest. Hence, in the hole
theory, u3 is interpreted as a spin-down, positive-energy, positive-charge state (at rest), i.e.,
a positron.

Generalizing to spin-1/2 particles other than electrons, it is conventional to label particle
4-spinors as u and antiparticle 4-spinors as v. We would like to use positive energies in the
antiparticle wavefunction, so it is customary to write it as,

ψ = v ei px (antiparticle). (15)

This corresponds to a hole with 4-momentum −p = (−E,−p), so the Dirac equation (1) for
an antiparticle state leads to,

Pμγ
μ v = −pμγ

μv = mv, /p v = −mv (antiparticle), (16)

while for a particle state, /pu = mu.
We now consider the 4-spinors for plane-wave states of a particle of 3-momentum p and

energy E =
√
m2 + p2 > 0. We write the particle 4-spinor u in terms of two, 2-components

spinors χ and ζ,

u ∝
⎛
⎝ χ

ζ

⎞
⎠ . (17)

Then, eq. (8), /P u = /pu = mu, implies, Eγ0u− p · γu = mu,

E

⎛
⎝ I2 0

0 −I2

⎞
⎠
⎛
⎝ χ

ζ

⎞
⎠− p ·

⎛
⎝ 0 σ

−σ 0

⎞
⎠
⎛
⎝ χ

ζ

⎞
⎠ ∝ m

⎛
⎝ χ

ζ

⎞
⎠ , (18)

Eχ− p · σ ζ ∝ mχ, ⇒ χ =
p · σ
E −m

ζ, (19)

−Eζ + p · σ χ ∝ mζ, ⇒ ζ =
p · σ
E +m

χ. (20)

Hence,

u ∝
⎛
⎝ χ

p·σ
E+m

χ

⎞
⎠ , (21)

4



is a general particle (plane-wave) 4-spinor. For antiparticles, /p v = −mv, and we similarly
find,

v ∝
⎛
⎝ p·σ

E+m
ζ

ζ

⎞
⎠ . (22)

For nonzero momentum p, all four components are nonzero in both particle and antipar-
ticle 4-spinors. Thus, the Dirac equation does not, in general, split into two independent
2-component equations.

2.1 Normalization

To use the plane-wave 4-spinors in cross-section calculations, following the relativistic version
of Fermi’s “golden rule”,8 they should be normalized to 2E particles per unit volume.

To clarify this, we develop the relativistic probability current density Jμ which obeys the
conservation law,

∂μJ
μ = 0. (23)

We define ψ† = (ψ∗
1, ψ

∗
2, ψ

∗
3, ψ

∗
4) as the conjugate of ψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎟⎟⎟⎠
. (24)

We multiply the Dirac equation (1) by the ψ† to obtain,

iψ†γ0∂ψ

∂t
+ iψ†γ · ∇ψ = mψ†ψ. (25)

The usual trick is to conjugate this equation and subtract. Now, γ0† = γ0, but,

γ† =

⎛
⎝ 0 σ

−σ 0

⎞
⎠

†

=

⎛
⎝ 0 −σ

σ 0

⎞
⎠ = −γ, (26)

as σ†
j = σj, which leads to trouble. A better behaved combination is γ0γ,

(γ0γ)† =

⎛
⎝ 0 σ

σ 0

⎞
⎠

†

=

⎛
⎝ 0 σ

σ 0

⎞
⎠ = γ0γ. (27)

So, instead we multiply the Dirac equation by ψ†γ0,

iψ†γ0γ0∂ψ

∂t
+ iψ†γ0γ · ∇ψ = mψ†γ0ψ, (28)

iψ†∂ψ
∂t

+ iψ†γ0γ · ∇ψ = mψ†γ0ψ, using (γ0)2 = I4. (29)

8See p. 74 and 79 of http://kirkmcd.princeton.edu/examples/ph529/ph529l5.pdf
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The conjugate equation is, recalling that (Oψ)† = ψ†O†,

− iψ
∂ψ†

∂t
+ i∇ψ† · (γ0γψ) = mψ†γ0ψ, (30)

Subtracting eq. (30) from (29),

i
∂

∂t
(ψ†ψ) + i∇ · (ψ†γ0γψ) = 0, (31)

such that we can identify the probability current density as,

Jμ = ψ†γ0γμψ, (32)

and the probability density is,

ρ = J0 = ψ†ψ. (33)

In general, the combination ψ†γ0 leads to clearer physical interpretations than does ψ†

alone, so we define,

ψ̄ = ψ†γ0 (34)

as the adjoint of ψ (and not the antiparticle of ψ). Matrix elements of a Dirac operator
f(γμ) will be taken as ψ̄2 f ψ1 rather than ψ†

2 f ψ1, as the former leads to quantities with
well-defined Lorentz transformations (i.e., scalar, vector, tensor, ...).9

The adjoint of an operator f is then,

f̄ = γ0f
†γ0. (35)

That is,

(ψ̄2 f ψ1)
† = ψ†

1 f
†γ0† ψ2 = ψ†

1 γ
0 γ0 f † γ0 ψ2 = ψ̄1 f̄ ψ2. (36)

Returning to the probability density,

ρ = ψ†ψ = ψ̄γ0ψ, for the spinor u ∝
⎛
⎝ χ

p·σ
E+m

χ

⎞
⎠ , (37)

we have, with σ† = σ,

ū = u†γ0 ∝
(
χ†,

p · χ†σ
E +m

)
γ0 =

(
χ†,−χ† p · σ

E +m

)
. (38)

so that,

ρ = ūγ0u ∝ χ†
(
I2 +

(p · σ)(p ·σ)

(E +m)2

)
χ. (39)

9See, for example, sec. 2.4 of [6].
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Recalling the 2-spinor facts,

(p · σ)(q · σ) = (p · q) I2 + i σ · p× q, (p · σ)2 = p2I2, (40)

we have,

ρ ∝
(
I2 +

p2

(E +m)2

)
χ†χ =

2E

E +m
, (41)

supposing that χ†χ = 1.
As mentioned above, we want ρ = 2E, so the normalized particle 4-spinor is,

u =
√
E +m

⎛
⎝ χ

p·σ
E+m

χ

⎞
⎠ =

⎛
⎝ √

E +mχ

p√
E+m

p̂ · σ χ

⎞
⎠ =

⎛
⎝ √

E +mχ
√
E +m p̂ · σ χ

⎞
⎠ , (42)

where p̂ = p/p is a unit 3-vector, such that,10

ūu = (E +m)

(
1 − p2

(E +m)2

)
= 2m. (43)

Similarly, normalized antiparticle 4-spinors v, associated with plane-wave states ψ = v eipx,
can be written as,

v =
√
E +m

⎛
⎝ p·σ

E+m
ζ

ζ

⎞
⎠ =

⎛
⎝ p√

E+m
p̂ · σ ζ

√
E +mζ

⎞
⎠ =

⎛
⎝ √

E −m p̂ · σ ζ
√
E +mζ

⎞
⎠ , (44)

where the 2-spinor ζ obeys ζ†ζ = 1.
In the high-energy limit (E � m, E ≈ p), these 4-spinors simplify to,

u→
√
E

⎛
⎝ χ

p̂ · σ χ

⎞
⎠ , v →

√
E

⎛
⎝ p̂ · σ ζ

ζ

⎞
⎠ . (45)

2.2 Plane-Wave States in the Weyl Representation

A Weyl (chiral) representation is,

γ̆0 =

⎛
⎝ 0 I2

I2 0

⎞
⎠ , γ̆i =

⎛
⎝ 0 σi

−σi 0

⎞
⎠ , (46)

Following [17], we designate quantities in the Weyl representation with an accent brève, i.e.,
ψ̆. The Weyl basis can be obtained from the Dirac basis as,

γ̆μ = ŬγμŬ †, ψ̆ = Ŭψ, Ŭ =
1√
2

⎛
⎝ I2 −I2

I2 I2

⎞
⎠ , Ŭ † =

1√
2

⎛
⎝ I2 I2

−I2 I2

⎞
⎠ . (47)

10Warning: Some people prefer ūu = 1.
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We seek plane-wave solutions of the form,

ψ̆ = ŭ e−i p x = ŭ e−i pμxμ

. (48)

First, we consider the case of a particle at rest, pμ = (E, 0). Then, /Pψ̆ = mψ̆ reduces to
Eγ̆0 ŭ = mŭ. Since,

γ̆0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (49)

none of the simplest spinors (13) are eigenstates.
Rather, some simple eigenspinors in the Weyl representation are,

ŭ1 =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, ŭ2 =

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠
, ŭ3 =

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, ŭ4 =

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0

−1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠
.(50)

For spinors ŭ1 and ŭ2 we have E = m, but for spinors ŭ3 and ŭ4 we find E = −m which are
examples of the famous negative-energy solutions to the Dirac equation.

spinors ŭ1 and ŭ2 are for the spin up and spin down states, with respect to the z axis, of
a spin-1/2 particle at rest.

Dirac gave an interpretation of the “negative-energy” states ŭ3 and ŭ4 by means of a
“hole theory” [11, 12]. He argued that the “vacuum” consists of a “sea” of negative-energy
particles (dark energy?), occupying all possible negative-energy states, and that physical
states related to negative energy correspond to their absence from (holes in) this sea.

Spinor ŭ3 corresponds to a spin-up, negative-energy electron at rest. Hence, in the hole
theory, ŭ3 is interpreted as a spin-down, positive-energy, positive-charge state (at rest), i.e.,
a positron.

Generalizing to spin-1/2 particles other than electrons, it is conventional to label particle
4-spinors as ŭ and antiparticle 4-spinors as v̆. We would like to use positive energies in the
antiparticle wavefunction, so it is customary to write it as,

ψ̆ = v̆ ei px (antiparticle). (51)

This corresponds to a hole with 4-momentum −p = (−E,−p), so the Dirac equation,
i∂μγ̆

μψ̆ = mψ̆, for an antiparticle state leads to,

Pμγ̆
μ v̆ = −pμγ̆

μv̆ = m v̆, /p v̆ = −m v̆ (antiparticle), (52)

while for a particle state, /p ŭ = mŭ.
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We now consider the 4-spinors for plane-wave states of a particle of 3-momentum p and
energy E =

√
m2 + p2 > 0. We write the particle 4-spinor ŭ in terms of two, 2-components

spinors χ and ζ,

ŭ ∝
⎛
⎝ χ

ζ

⎞
⎠ . (53)

Then, /P ŭ = /p ŭ = mŭ implies, Eγ̆0ŭ− p · γ̆ŭ = mŭ,

E

⎛
⎝ 0 I2

I2 0

⎞
⎠
⎛
⎝ χ

ζ

⎞
⎠− p ·

⎛
⎝ 0 σ

−σ 0

⎞
⎠
⎛
⎝ χ

ζ

⎞
⎠ ∝ m

⎛
⎝ χ

ζ

⎞
⎠ , (54)

Eζ − p · σ ζ ∝ mχ, ⇒ χ =
E − p · σ

m
ζ, (55)

Eχ + p · σ χ ∝ mζ, ⇒ ζ =
E + p · σ

m
χ. (56)

Hence,

ŭ ∝
⎛
⎝ χ

E+p·σ
m

χ

⎞
⎠ , (57)

is a general particle (plane-wave) 4-spinor. For antiparticles, /p v = −mv, and we similarly
find,

v ∝
⎛
⎝ p·σ−E

m
ζ

ζ

⎞
⎠ . (58)

I find the forms (57)-(58) to be awkward. Alternative forms can be obtained from the
(normalized) forms (42) and (44) in the Dirac representation via the unitary transformation
(47). Thus,

ŭ =

√
E +m

2

⎛
⎝ I2 −I2

I2 I2

⎞
⎠
⎛
⎝ χ

p·σ
E+m

χ

⎞
⎠ =

√
E + m

2

⎛
⎝ (

I2 − p·σ
E+m

)
χ(

I2 + p·σ
E+m

)
χ

⎞
⎠ , (59)

v̆ =

√
E +m

2

⎛
⎝ I2 −I2

I2 I2

⎞
⎠
⎛
⎝ p·σ

E+m
ζ

ζ

⎞
⎠ =

√
E +m

2

⎛
⎝ (

p·σ
E+m

− I2
)
ζ(

p·σ
E+m

+ I2
)
ζ

⎞
⎠ , (60)

where χ†χ = 1 = ζ†ζ and p̂ = p/p is a unit 3-vector, such that the normalizations are,

¯̆uŭ = ŭ†γ̆0ŭ = ¯̆vv̆ = (E +m)

(
1 − p2

(E +m)2

)
= 2m. (61)

3 Lorentz Boosts of Spinors

In 1928, both Darwin [19] and Weyl [20] discussed this topic, which marked a new application
of group theory to physics.11

11For a more recent review, see [21], which uses a different version of the Weyl representation than do we.
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We first digress slightly to record some lore about rotations of spinors.

3.1 Spatial Rotations of 2-Spinors

A spatial rotation of a 2-spinor should leave its length/normalization unchanged, so the 2×2
matrix operator U2 that describes this rotation should be unitary: U†

2U2 = I2. This matrix
has four elements, and so can be related to a set of four independent, unitary, 2×2 matrices
such as σμ ≡ (I2,σ): U2 = aI2 + b σ1 + c σ2 + dσ3.

As shown in Prob. 3(c) of http://kirkmcd.princeton.edu/examples/ph410problems.pdf, a
general 2 × 2 unitary matrix can be written as,

U2 = eiδ

(
cos

θ

2
I2 + i sin

θ

2
û · σ

)
= eiδei θ

2
û·σ, (62)

where δ and θ are real numbers and û is a real unit vector.12

A general rotation in 3-space is characterized by 3 angles. We follow Euler in naming
these angles as in the figure below.13 The rotation takes the axis (x, y, z) into the axes
(x′, y′, z′) in 3 steps:

1. A rotation by angle α about the z-axis, which brings the y-axis to the y1 axis.

2. A rotation by angle β about the y1-axis, which brings the z-axis to the z′-axis.

3. A rotation by angle γ about the z′-axis, which brings the y1-axis to the y′-axis (and
the x-axis to the x′-axis).

The 2 × 2 unitary matrix that corresponds to this rotation is,

R2(α, β, γ) =

⎛
⎝ cos β

2
ei(α+γ)/2

− sin β
2
ei(α−γ)/2 cos β

2
e−i(α+γ)/2

⎞
⎠

=

⎛
⎝ eiγ/2 0

0 e−iγ/2

⎞
⎠
⎛
⎝ cos β

2
sin β

2

− sin β
2

cos β
2

⎞
⎠
⎛
⎝ eiα/2 0

0 e−iα/2

⎞
⎠

= R2,z′(γ)R2,y1(β)R2,z(α), (63)

12Note that if make the replacements θ → −θ and û → −û we obtain another valid representation of U2,
since the physical operation of a rotation by angle θ about an axis û is identical to a rotation by −θ about
the axis −û.

13From sec. 58 of Landau and Lifshitz, Quantum Mechanics.
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where the decomposition into the product of 3 rotation matrices14 follows from the particular
rules,

R2,x(φ) =

⎛
⎝ cos φ

2
i sin φ

2

i sin φ
2

cos φ
2

⎞
⎠ , (64)

R2,y(φ) =

⎛
⎝ cos φ

2
sin φ

2

− sin φ
2

cos φ
2

⎞
⎠ , (65)

R2,z(φ) =

(
eiφ/2 0

0 e−iφ/2

)
. (66)

and for a rotation of the coordinates axes by angle φ about direction û,

R2,u(φ) = ei φ
2
û·σ = I2 cos

φ

2
+ i û ·σ sin

φ

2
. (67)

Rather than rotating the coordinate axes, we may wish to rotate vectors in
Bloch space by an angle φ about a given axis û, while leaving the coordinate
axes fixed. The operator,

R2,u(−φ) = e−i φ
2
û·σ, (68)

performs this type of rotation.

3.2 Lorentz Boosts of 2-Spinors

Lorentz boosts (transformations) are more familiar for ordinary 4 vectors, such as xμ =
(t, x, y, z). Here, we seek a 2 × 2 matrix L2 such that L2χ is a Lorentz transformation of the
2-spinor χ.15

To understand the effect of a Lorentz boost on a 2-spinor, it is helpful to consider the
2 × 2 matrix,

X2 =

⎛
⎝ t+ z x− iy

x+ iy t− z

⎞
⎠ = tI2 + xσx + yσy + zσz = xμσμ, (69)

where,16

σμ = (I2,σ), σμ = (I2,−σ), (70)

Then, the determinant of X2 is,

|X2| = t2 − x2 − y2 − z2 = xμxμ, (71)

14The order of operations is that the rightmost rotation in eq. (63) is to be performed first.
15We follow sec. III of [21].
16Our σµ is often written as σ̄µ.
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which is a Lorentz invariant.
The Lorentz transformation of X2 takes the form X′

2 = L2X2L
†
2. Lorentz invariance implies

that,

det X2 = |X′
2| = |L2| |X2|

∣∣∣L†
2

∣∣∣ = |L2|2 |X2| , |L2|2 = 1. (72)

It suffices to consider that |L2| = 1, for which a simple example is,

L2,z = L†
2,z =

⎛
⎝ e

w
2 0

0 e−
w
2

⎞
⎠ = e

w
2

σ3 = cosh(w/2) I2 + sinh(w/2)σ3. (73)

With this,

X′
2 =

⎛
⎝ t′ + z′ x′ − iy′

x′ + iy′ t′ − z′

⎞
⎠ = L2,zX2L

†
2,z =

⎛
⎝ ew(t+ z) x− iy

x+ iy e−w(t− z)

⎞
⎠ , (74)

and hence,

t′ = t coshw + z sinhw, x′ = x, y′ = y, z′ = z coshw + t sinhw. (75)

A particle at rest at the origin in the unprimed frame has velocity v′ = tanhw ẑ′ in the
′ frame. That is, L2,z corresponds to a Lorentz boost of the particle along the z-axis. The
boost parameter w = tanh−1(v′) is called the rapidity.17

Similarly, L2,x = e
w
2

σ1 and L2,y = e
w
2

σ2 correspond to Lorentz boosts along the x- and
y-axes. Thus, a boost of a 2-spinor along direction ŵ is described by the 2 × 2 matrix,

L2,w = e
w
2
·σ = I2 +

w · σ
2

+
1

2!

(w · σ
2

)2

+
1

3!

(w · σ
2

)3

+ · · ·

= I2

(
1 +

1

2!

(w
2

)2

+ · · ·
)

+ ŵ · σ
(
w

2
+

1

3!

(w
2

)3

+ · · ·
)

= I2 cosh
w

2
+ ŵ · σ sinh

w

2
, (76)

recalling eq. (40) that (w · σ)2 = w2I2.
If the boost is applied to a particle of mass m at rest, it takes on momentum p and

velocity v related by,

w = tanh−1 v, tanhw = v =
p

E
, coshw =

E

m
, sinhw =

p

m
. (77)

cosh
w

2
=

√
E +m

2m
=

√
E + p

2
+

√
E − p

2
, (78)

sinh
w

2
=

√
E −m

2m
=

p√
2m(E +m)

=

√
E + p

2
−

√
E − p

2
, (79)

17The concept of rapidity was introduced in 1910 by Varićak [22] and by Whittaker [23], and given that
name by Robb (1911), p. 9 of [24].
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which permits eq. (76) to be rewritten in various ways, such as,

L2,w =

√
E +m

2m

(
I2 +

p · σ
E +m

)
. (80)

If we desire a highly compact notation, we can write,

L2,w = e
w
2
·σ =

√
ew·σ =

√
I2 coshw + ŵ · σ sinhw =

√
EI2 + p · σ

m
=

√
pμσμ

m
=

√
pσ

m
.(81)

using eq. (70). Note also that,

L2,−w = e−
w
2
·σ =

√
pσ

m
. (82)

3.3 Lorentz Boosts of 4-Spinors

Recalling the general forms (42) and (44) of Dirac 4-spinors in the Dirac representation, the
Lorentz boost L (a 4× 4 matrix) of a particle/antiparticle at rest to velocity v = p/E must
obey,

L
√

2m

⎛
⎝ χ

0

⎞
⎠ =

√
E +m

⎛
⎝ χ

p·σ
E+m

χ

⎞
⎠ , L

√
2m

⎛
⎝ 0

ζ

⎞
⎠ =

√
E +m

⎛
⎝ p·σ

E+m
ζ

ζ

⎞
⎠ . (83)

Hence, L has the form,

L =

⎛
⎝ AI2 BI2

BI2 AI2

⎞
⎠ , (84)

where,

A =

√
1

2

(
E

m
+ 1

)
=

√
coshw + 1

2
= cosh

w

2
, (85)

B =

√
p2

2m(E +m)
p̂ · σ =

√
1

2

(
E

m
− 1

)
p̂ · σ =

√
coshw − 1

2
p̂ · σ = sinh

w

2
p̂ · σ, (86)

and w is the boost rapidity, related by eqs. (77)-(79). That is, in the Dirac representation,
the boost matrix is, with p̂ = v̂ = ŵ,

Lw =

⎛
⎝ I2 cosh(w/2) ŵ · σ sinh(w/2)

ŵ · σ sinh(w/2) I2 cosh(w/2)

⎞
⎠ =

√
E +m

2m

⎛
⎝ I2

p·σ
E+m

p·σ
E+m

I2

⎞
⎠ . (87)
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The boost matrix in the Weyl representation can be obtained via the transformation (47),

L̆w =

⎛
⎝ I2 cosh(w/2) − ŵ · σ sinh(w/2) 0

0 I2 cosh(w/2) + ŵ · σ sinh(w/2)

⎞
⎠ (88)

=

√
E +m

2m

⎛
⎝ I2 − p·σ

E+m
0

0 I2 + p·σ
E+m

⎞
⎠ =

⎛
⎝ e−

w
2
·σ 0

0 e
w
2
·σ

⎞
⎠ =

1√
m

⎛
⎝ √

pσ 0

0
√
pσ

⎞
⎠

using eqs. (76) and (81)-(82).

4 Electric Charge Conjugation

Pauli introduced the concept of electric charge conjugation of Dirac spinors and the operator
C (but not the term charge conjugation) in 1936, p. 130 of [25] (see also [26]), such that,18

ψ(C) = Cψ	, (89)

is the charge-conjugate state of spinor ψ, with the same energy, momentum and spin com-
ponents as ψ, but if ψ is a particle plane-wave state with spacetime wavefunction e−ipx, then
ψ(C) is an antiparticle state with spacetime wavefunction eipx, and vice versa. If state ψ
has electric charge q, then ψ(C) has electric charge −q.19 Charge conjugation leaves mass
unchanged, such that a particle and its antiparticle have the same rest mass m.20

To deduce the charge-conjugation matrix C , we start with the Dirac equation (1) for a
particle state ψ.21 We expect that the antiparticle state ψ(C) = Cψ∗ also satisfies the Dirac
equation,

iγμ∂μCψ
∗ = mCψ∗. (90)

A clever step is to take the complex conjugate of eq. (1),

− iγμ∗∂μψ
∗ = mψ∗. (91)

Applying the desired charge-conjugation operator C to this, we have,

− iCγμ∗∂μψ
∗ = mCψ∗ = mψ(C). (92)

For this to be the Dirac equation (90), we require that,

− Cγμ∗ = γμC. (93)

18We will also use the notation ψ̃ for the antiparticle ψ(C) of a state ψ.
19The term “charge conjugation” (but with the symbol L) may have been first by Kramers (1937) [27].

The term antimatter was introduced by Schuster in 1898 [28], but in his vision antimatter had negative mass.
The present vision of antiparticles via electric charge conjugation of particles is perhaps closer to Kelvin’s
image method for a planar conductor, p. 288 of [29].

20This was not initially understood by Dirac, who first speculated that the antiparticle of an electron is
a proton [11].

21This argument follows sec. 5.4, p. 107 of [30].
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You can verify that this implies the electric-charge-conjugation matrix operator to be,22

C = iγ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ 0 iσ2

−iσ2 0

⎞
⎠ . (94)

Then, applying the electric-charge-conjugation transformation to the particle 4-spinor u
of eq. (42), we obtain (on suppression of the overall factor

√
E +m) the antiparticle spinor,

ũ = iγ2

⎛
⎝ χ	

p·σ�

E+m
χ	

⎞
⎠ =

⎛
⎝ iσ2

p·σ�

E+m
χ	

−iσ2χ
	

⎞
⎠ =

⎛
⎝ p·σ

E+m
(−iσ2χ

	)

−iσ2χ
	

⎞
⎠ =

⎛
⎝ p·σ

E+m
χ̃

χ̃

⎞
⎠ = v, (95)

using that fact that σ2 σ∗ = −σ σ2. Hence, the antiparticle 2-spinor χ̃ is related to its
corresponding particle 2-spinor χ by,

χ̃ = −iσ2χ
	, χ = iσ2χ̃

∗. (96)

4.1 Electric-Charge Conjugation in the Weyl Representation

The discussion of eqs. (90)-(92) holds in the Weyl representation as well, so we infer that
the electric-charge-conjugation operator C̆ in that representation must obey,

− C̆γ̆μ∗ = γ̆μC̆. (97)

You can verify that this implies the electric-charge-conjugation matrix operator to be,

C̆ = −iγ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ 0 −iσ2

iσ2 0

⎞
⎠ [= −C ]. (98)

Then, applying the electric-charge-conjugation transformation to the particle 4-spinor u
of eq. (59), we obtain (on suppression of the overall factor

√
(E + m)/2) the antiparticle

spinor, recalling that σ2 σ∗ = −σ σ2 and χ̃ = −iσ2χ
∗,

˜̆u = −iγ̆2

⎛
⎝ (

1 − p·σ�

E+m

)
χ	(

1 + p·σ�

E+m

)
χ	

⎞
⎠ =

⎛
⎝ −iσ2

(
1 + p·σ�

E+m

)
χ	

iσ2

(
1 − p·σ�

E+m

)
χ	

⎞
⎠ =

⎛
⎝ (

1 − p·σ
E+m

)
(−iσ2χ

	)(
1 + p·σ

E+m

)
(iσ2χ

	)

⎞
⎠

= −
⎛
⎝ (

p·σ
E+m

− 1
)
χ̃(

p·σ
E+m

+ 1
)
χ̃

⎞
⎠ = v̆, (99)

as in eq. (59), taking ζ = −χ̃.

22Warning: Many people write Cγ0 for the matrix C of eq. (94). See, for example,
https://en.wikipedia.org/wiki/Gamma_matrices
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5 Helicity States

The concept of right- and lefthanded circularly polarized waves arose in optics,23 and their
equivalents for particles with spin are called helicity states,24 which are to be distinguished
from the chirality states discussed in sec. 6 below.

The helicity states of a spin-1/2 particle with nonzero velocity describe its spin component
along the direction of its momentum p.

5.1 2-Component Helicity Spinors

A general 2-component (spinor) state ξ = a ξ+ + b ξ− where |a|2 + |b|2 = 1, can also be
written as, to within an overall phase factor,

ξ = cos θ ξ+ + eiφ sin θ ξ−. (100)

So, it is tempting to interpret parameters θ and φ as angles describing the orientation of a
unit 3-vector that is associated with the state χ in a spherical coordinate system (r, θ, φ).
The state ξ+ might then correspond to the unit 3-vector ẑ that points up along the z-axis,
while ξ− ↔ −ẑ.

However, this doesn’t work! The suggestion is that the state ξ+ corresponds to angles
θ = 0, φ = 0 and state ξ− to angles θ = π, φ = 0. With this hypothesis, eq. (100) gives a
satisfactory representation of a spin-up state as ξ+, but it implies that the spin-down state
would be eiπξ+ = −ξ+, which is not really distinct from the spin-up state ξ+.

We fix up things be writing,

ξ = eiδ

(
cos

θ

2
ξ+ + eiφ sin

θ

2
ξ−

)
, (101)

and identifying angles θ and φ with the polar and azimuthal angles of a unit 3-vector in an
abstract 3-space (sometimes called the Bloch sphere). That is, we associate the state ξ with
the unit 3-vector whose components are (x, y, z) = (sin θ cos φ, sin θ sin φ, cos θ). Now, the
associations,

spin up ↔ (θ = 0, φ = 0) ↔ χ+, spin down ↔ (θ = π, φ = 0) ↔ χ−, (102)

given by eq. (101) are satisfactory.
We then infer from eq. (101) that the spin-up and spin-down states in the direction (θ, φ)

are, to within an overall phase factor,

ξ+(θ, φ) ∝
⎛
⎝ cos θ

2

sin θ
2
eiφ

⎞
⎠ , ξ−(θ, φ) ∝ χ+(π − θ, φ+ π) =

⎛
⎝ sin θ

2

− cos θ
2
eiφ

⎞
⎠ . (103)

23Phenomena related to circular polarization were investigated by rivals Arago and Biot in 1811, whose
thinking was based on a corpuscular theory of light. In a wave theory, Fresnel first distinguished between
(transverse) linear and circular polarization in 1817. See, for example, [31].

24The term helicity may have first been used by Watanabe [33], whereas the term spirality had been
proposed by Lee and Yang shortly before, on p. 1673 of [35]. The latter defined positive helicity/spirality as
spin in the direction of momentum, and called this righthanded. However, the historical convention of optics
was that light waves with positive helicity were called lefthanded circularly polarized.
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The standard form of the spin-up/down states is,

ξ+(θ, φ) =

⎛
⎝ cos θ

2
e−iφ/2

sin θ
2
eiφ/2

⎞
⎠ , ξ−(θ, φ) =

⎛
⎝ sin θ

2
e−iφ/2

− cos θ
2
eiφ/2

⎞
⎠ , (104)

which is consistent with eq. (103), but perhaps does not obviously follow from it.25

We can now define the positive and negative helicity 2-spinor states for a particle with
3-momentum p in direction (θ, φ) as χ+ = ξ+(θ, φ) and χ− = ξ−(θ, φ), respectively, recalling
eq. (104), while the helicity states of an antiparticle are χ̃+ = ξ−(θ, φ) = χ− and χ̃− =
−ξ+(θ, φ) = −χ+. In all cases, positive helicity means spin in the direction of momentum p.

The helicity 2-spinors transform under electric-charge conjugation (96) as,

χ+ =

⎛
⎝ cos θ

2
e−iφ/2

sin θ
2
eiφ/2

⎞
⎠ → χ̃+ = −iσ2χ

∗
+ =

⎛
⎝ − sin θ

2
e−iφ/2

cos θ
2
eiφ/2

⎞
⎠ = χ−, (105)

χ− =

⎛
⎝ − sin θ

2
e−iφ/2

cos θ
2
eiφ/2

⎞
⎠ → χ̃− = −iσ2χ

∗
− =

⎛
⎝ − cos θ

2
e−iφ/2

− sin θ
2
eiφ/2

⎞
⎠ = −χ+, (106)

as claimed above.

5.1.1 Helicity Projection Operator for 2-Spinors

The helicity operator h2 = p̂(θ, φ) · σ has the form,

h2 = p̂(θ, φ) · σ =

⎛
⎝ cos θ sin θ e−iφ

sin θ eiφ − cos θ

⎞
⎠ , (107)

such that h2χ± = p̂(θ, φ) · σ χ± = ±χ±.
If a general 2-spinor is written as χ = a+χ+ +a−χ−, in terms of the helicity 2-spinors for

the (θ, φ) direction, then (I2 ± h2)χ = 2a±χ±. Hence,

P2,±(θ, φ) =
I2 ± h2

2
=
I2 ± p̂(θ, φ) ·σ

2
(108)

are the 2-spinor helicity projection operators for direction (θ, φ): P2,±χ± = χ±, P2,±χ∓ = 0.

25The standard form (104) can also be deduced via spin-1/2 rotation matrices, as discussed, for example,
in Prob. 1 of http://kirkmcd.princeton.edu/examples/ph406/ph406_set4_2014_sol.pdf
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5.2 4-Component Helicity Spinors

Recalling eqs. (42) and (44), the particle and antiparticle helicity 4-spinors u± and v± are,
with χ̃± = ±χ∓, and defining

√
E+ =

√
E +m and

√
E− =

√
E −m = p/

√
E +m,

u+(θ, φ) =

⎛
⎝ √

E +mχ+

p√
E+m

p̂ · σ χ+

⎞
⎠ =

⎛
⎝ √

E+ χ+√
E− χ+

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
E+ cos θ

2
e−iφ/2

√
E+ sin θ

2
eiφ/2

√
E− cos θ

2
e−iφ/2

√
E− sin θ

2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
, (109)

u−(θ, φ) =

⎛
⎝ √

E +mχ−
p√

E+m
p̂ ·σ χ−

⎞
⎠ =

⎛
⎝ √

E+ χ−

−√
E− χ−

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−√
E+ sin θ

2
e−iφ/2

√
E+ cos θ

2
eiφ/2

√
E− sin θ

2
e−iφ/2

−√
E− cos θ

2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
,(110)

v+(θ, φ) =

⎛
⎝ p√

E+m
p̂ ·σ χ̃+√

E +mχ̃+

⎞
⎠ =

⎛
⎝ −√

E− χ−√
E+ χ−

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
E− sin θ

2
e−iφ/2

−√
E− cos θ

2
eiφ/2

−√
E+ sin θ

2
e−iφ/2

√
E+ cos θ

2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
,(111)

v−(θ, φ) =

⎛
⎝ p√

E+m
p̂ ·σ χ̃−√

E +mχ̃−

⎞
⎠ =

⎛
⎝ −√

E− χ+

−√
E+ χ+

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−√
E− cos θ

2
e−iφ/2

−√
E− sin θ

2
eiφ/2

−√
E+ cos θ

2
e−iφ/2

−√
E+ sin θ

2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
.(112)

Note that v± = Cu∗±, using the electric-charge-conjugation operator C = iγ2 found in
eq. (94).

5.2.1 Helicity Projection Operators for 4-Spinors.

The generalization to 4-spinors of the 2-spinor helicity projection operators (108) is,

h =

⎛
⎝ h2 0

0 h2

⎞
⎠ , P± =

I4 ± h

2
, (113)

such that hu± = ±u±, P±u± = u±, P±u∓ = 0. Then, recalling eqs. (109)-(112), the operator
P+ projects positive helicity for particles, but negative helicity for antiparticles, while P−
projects negative helicity for particles, but positive helicity for antiparticles, P±v∓ = v∓,
P±v± = 0.
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We also note that,

γ0γγ5 =

⎛
⎝ I 0

0 −I

⎞
⎠
⎛
⎝ 0 σ

−σ 0

⎞
⎠
⎛
⎝ 0 I

I 0

⎞
⎠ =

⎛
⎝ σ 0

0 σ

⎞
⎠ , P± =

I4 ± γ0 p̂(θ, φ) · γ γ5

2
,(114)

and γμγ0p̂ · γ γ5 = γ0p̂ · γ γ5γμ. Consequently, the helicity 4-spinor states ψ± satisfy the
Dirac equation, iγμ∂μψ± = mψ±,

P±(iγμ∂μψ) = iγμ∂μP±ψ = iγμ∂μψ± = P±(mψ) = mψ±. (115)

5.3 Helicity Conservation in the Electromagnetic Interaction of

High-Energy Spin-1/2 Particles

We consider the electromagnetic interaction of a pointlike particle of charge e, in which it
scatters from motion along the z axis to that at angle θ to the z-axis, and in which the
particle has high energy at all times (E � m, E ≈ p). The part of the scattering matrix
element involving the 4-spinor of this particle is eūγμu or ev̄γμu.26 We now show that in this
approximation, matrix elements 〈ū−(θ)|γμ|u+(0)〉 vanish for μ = 0, 1, 2, 3, and similarly that
〈v̄+(θ)|γμ|u+(0)〉 = 0, i.e., initial particle couples only to final states of the same helicity.

For high-speed motion (E+ ≈ E− ≈ E) along the +z-axis, the 4-spinors are,

u+(0) →

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, u−(0) →

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

−1

⎞
⎟⎟⎟⎟⎟⎟⎠
, v+(0) →

⎛
⎜⎜⎜⎜⎜⎜⎝

0

−1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠
, v−(0) →

⎛
⎜⎜⎜⎜⎜⎜⎝

−1

0

−1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (116)

Recalling that,

γ0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
, γ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

γ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, γ3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (117)

26See, for example, pp. 89-92 of http://kirkmcd.princeton.edu/examples/ph529/ph529l6.pdf
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we have that,

γ0u+(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

−1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, γ1u+(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

−1

⎞
⎟⎟⎟⎟⎟⎟⎠
, γ2u+(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

i

0

−i

⎞
⎟⎟⎟⎟⎟⎟⎠
, γ3u+(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

−1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
.(118)

To evaluate matrix elements such as ūfγμui we recall that this equals u†fγ0γμui, so we
multiply eq. (115) by γ0 to obtain,

γ0γ0u+(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, γ0γ1u+(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠
, γ0γ2u+(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

i

0

i

⎞
⎟⎟⎟⎟⎟⎟⎠
, γ0γ3u+(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
.(119)

Then, using eqs. (110)-(111) we see that,

〈ū−(θ, φ)|γμ|u+(0)〉 = u†−(θ, φ)γ0γμu+(0) = 0 = 〈v̄+(θ, φ)|γμ|u+(0)〉. (120)

Hence, a high-energy pointlike spin-1/2 particle of a given helicity cannot couple a particle
of the opposite helicity via the electromagnetic interaction, nor can it annhilate with an
antiparticle of the same helicity. It is possible for a high-energy spin-1/2 particle of a given
helicity to scatter into a particle of the same helicity, or annihilate with an antiparticle of
opposite helicity, via single-photon emission.

Examples where helicity conservation in the high-energy limit is useful in providing a
simplified understanding include e+e− annihilation into a pair of spin-0 or spin-1/2 particles,
as well as elastic scattering of electrons off spin-0 and spin-1/2 particles, as discussed on
p. 118 ff of http://kirkmcd.princeton.edu/examples/ph529/ph529l7.pdf.

5.4 Orthogonality Relations of the Helicity 4-Spinors

If we label the four components of a general spinor ψ as ψi, i = 1, 4, then,

φ†ψ = φ∗
1φ1 + φ∗

2φ2 + φ∗3φ3 + φ∗
4φ4, (121)

while,

φ̄ψ = φ†γ0ψ = φ∗
1φ1 + φ∗

2φ2 − φ∗
3φ3 − φ∗

4φ4. (122)

The helicity 4-spinors (109)-(112) obey,

u†+u+ = u†−u− = v†+v+ = v†−v− = 2E, (123)

u†+u− = u†+v+ = u†−v− = v†+v− = 0, (124)

u†+v− = −2p = −u†−v+, (125)
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while,

ū+u+ = ū−u− = v̄+v+ = v̄−v− = 2m, (126)

ū+u− = ū+v+ = ū−v− = v̄+v− = ū+v− = ū−v+ = 0. (127)

That is, the u± and v± spinors are fully orthogonal with respect to the scalar product φ̄ψ,
but not with respect to φ†ψ.

5.5 Helicity Is Not Lorentz Invariant

Helicity is only well defined for particles in motion, which indicates that it is not a Lorentz-
invariant concept. A particle moving in the +z direction with spin up with respect to the
z-axis has positive helicity. But, that particle can be viewed in a frame where its velocity
is in the −z direction, while its spin remains up with respect to the z-axis, such that its
velocity is negative in this frame.

It is of interest to define a Lorentz-invariant attribute of particles with spin that cor-
responds to their helicity in the high-energy limit. This is chirality, discussed in the next
section.

5.6 Helicity in the Weyl Representation

The helicity spinors (109)-(112) can be transformed to the Weyl representation via ψ̆ = Ŭψ
of eq. (47), with A± ≡ (

√
E +m±√

E −m)/
√

2 = (
√
E+ ±√

E−)/
√

2,

ŭ+(θ, φ) =

⎛
⎝ A− χ+

A+ χ+

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A− cos θ
2
e−iφ/2

A− sin θ
2
eiφ/2

A+ cos θ
2
e−iφ/2

A+ sin θ
2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
, ŭ+(0, 0;p = 0) =

√
m

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
,(128)

ŭ−(θ, φ) =

⎛
⎝ A+ χ−

−A− χ−

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−A+ sin θ
2
e−iφ/2

A+ cos θ
2
eiφ/2

A− sin θ
2
e−iφ/2

−A− cos θ
2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
, ŭ−(0, 0;p = 0) =

√
m

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠
,(129)

v̆+(θ, φ) =

⎛
⎝ −A+ χ−

A− χ−

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A+ sin θ
2
e−iφ/2

−A+ cos θ
2
eiφ/2

−A− sin θ
2
e−iφ/2

A− cos θ
2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
, v̆+(0, 0;p = 0) =

√
m

⎛
⎜⎜⎜⎜⎜⎜⎝

0

−1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠
,(130)
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v̆−(θ, φ) =

⎛
⎝ A− χ+

−A+ χ+

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A− cos θ
2
e−iφ/2

A− sin θ
2
eiφ/2

−A+ cos θ
2
e−iφ/2

−A+ sin θ
2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
, ŭ(0, 0;p = 0) =

√
m

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

−1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
.(131)

The four spinors ŭ±(θ = 0, φ = 0,p = 0) and v̆±(θ = 0, φ = 0,p = 0) can be regarded as the
simplest physical spinors in the Weyl representation.27

The helicity projection operators of eq. (113) hold in that form in the Weyl representation
as well.

Note that v̆± = C̆ŭ∗±, using the electric-charge-conjugation operator C̆ = −iγ̆2 found in
eq. (98).

In the high-energy limit, E ≈ p, A+ ≈ √
2E and A− ≈ 0.

6 Chirality States

In the high-energy limit (E � m), the helicity spinors (109)-(110) simplify to,

u+(θ, φ) ∝

⎛
⎜⎜⎜⎜⎜⎜⎝

cos θ
2
e−iφ/2

sin θ
2
eiφ/2

cos θ
2
e−iφ/2

sin θ
2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
, u−(θ, φ) ∝

⎛
⎜⎜⎜⎜⎜⎜⎝

− sin θ
2
e−iφ/2

cos θ
2
eiφ/2

sin θ
2
e−iφ/2

− cos θ
2
eiφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠
, (132)

which are eigenstates of the matrix,

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ 0 I2

I2 0

⎞
⎠ , (133)

i.e., Γu± = ±u±. This matrix already has a name,28

Γ = γ5 = iγ0γ1γ2γ3, (γ5)2 = I4, γ̄5 = −γ5, γ5γμ = −γμγ5. (134)

27Compare with eq. (11.18) of [32], which calls v̆+ a spin-down state.
28The matrix γ5 was first defined by Pauli [25] as γ5 = γ1γ2γ3γ4 (= γ1γ2γ3γ0), and this notation was

used in such notable papers as [35, 36]. The form (134) may have first been used by Case (1957) [37].
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We now define the chirality projection operators,29,30

PR,L ≡ I4 ± γ5

2

⎡
⎣=

1

2

⎛
⎝ I2 ±I2

±I2 I2

⎞
⎠
⎤
⎦ . (135)

We seek an eigenstate ψR of the chirality operator PR, such that PRψR = ψR,

PRψR ∝ PR

⎛
⎝ χR

ζR

⎞
⎠ =

1

2

⎛
⎝ χR + ζR

ζR + χR

⎞
⎠ = ψR =

⎛
⎝ χR

ζR

⎞
⎠ , (136)

which implies that ζR = χR,

ψR ∝
⎛
⎝ χR

χR

⎞
⎠ . (137)

When we consider eigenstates ψL of PL, we cannot obtain a simple form with PLψL = −ψL,
so we suppose that PLψL = ψL,

PLψL ∝ PL

⎛
⎝ χL

ζL

⎞
⎠ =

1

2

⎛
⎝ χL − ζL

ζL − χL

⎞
⎠ = ψL =

⎛
⎝ χL

ζL

⎞
⎠ , (138)

which implies that ζL = −χL,

ψL ∝
⎛
⎝ χL

−χL

⎞
⎠ . (139)

Note that the chirality spinors ψR,L are eigenstates of γ5: γ5ψR,L = ±ψR,L.
Already in 1929, Weyl [10] had commented that the right- and lefthanded chirality states

ψR,L of Dirac 4-spinors ψ might play an important role in physics. But, because these states
are not invariant under space inversion (parity), they were initially not considered to be
physically relevant.31

We note from eqs. (42) and (44) that in the rest frame of a spin-1/2 particle/antiparticle,
their 4-spinors which obey the Dirac equation (1)) have the forms,

u =
√

2m

⎛
⎝ χ

0

⎞
⎠ , v =

√
2m

⎛
⎝ 0

ζ

⎞
⎠ . (140)

Hence, the chirality states (137) and (139) are not ordinary solutions to the Dirac equation.

29R and L stand for righthanded and lefthanded, such that in the high-energy limit, PRu+ = u+, where
the positive-helicity state u+ was defined to be righthanded in [35].

30The term chirality as applied to spinors was first used by Watanabe (1957) [33], although Eddington
(1949) had used this term, p. 111 of [38], as distinguishing left- and righthanded frames in his (bizarre)
theory of elementary particles.

31See, for example, p. 226 of [34].
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6.1 Chirality States and the Dirac Equation

The right- and lefthanded-chirality states uR,L (and vR,L) do not strictly satisfy the Dirac
equation iγμ∂μu = mu, but rather,

iγμ∂μuR,L = muL,R, (141)

(and similarly iγμ∂μvR,L = mvR,L), since γ5γμ = −γμγ5:

I4 ± γ5

2
iγμ∂μu = iγμ∂μ

I4 ∓ γ5

2
u = iγμ∂μuL,R =

I4 ± γ5

2
mu = muR,L. (142)

Expanding eq. (141) (in the Dirac representation),

E

⎛
⎝ I2 0

0 −I2

⎞
⎠
⎛
⎝ χR,L

±χR,L

⎞
⎠− p ·

⎛
⎝ 0 σ

−σ 0

⎞
⎠
⎛
⎝ χR,L

±χR,L

⎞
⎠ ∝ m

⎛
⎝ χL,R

∓χL,R

⎞
⎠ , (143)

EχR,L ∓ p · σ χR,L ∝ mχL,R ⇒ EχR,L −mχL,R = ±p · σ χR,L. (144)

In the high-energy limit, E ≈ |p| � m, eq. (144) simplifies to p̂ · σ χR,L ≈ ±χR,L, such
that (in this limit) χR,L ≈ χ±, the helicity 2-spinors of sec. 5.1. That is, chirality (particle)
states are the same as helicity states in the high-energy limit, as anticipated in eq. (132).

uR,L(E � m) =
√
E

⎛
⎝ χ±

±χ±

⎞
⎠ ≈ u±(E � m), (145)

At the other extreme, a particle a rest, p = 0, E = m and χR,L = χL,R

The 2-spinors in the chirality states, eqs. (137) and (139), can be considered as sums of
the helicity 2 spinors χ+ and χ−. In the rest frame, where χL = χR, we write,

uR,L(p = 0) =
√
m

⎛
⎝ aχ+ + bχ−

±(aχ+ + bχ−)

⎞
⎠ , (146)

where |a|2 + |b|2 = 1. The boosted states with 3-momentum p follow from eq. (87) as, in
the high-energy limit where E ≈ p � m and the rapidity is related by tanhw = p/E ≈ 1,
cosh(w/2) ≈ sinh(w/2) ≈√E/2m,

uR(E � m) =

√
E

2

⎛
⎝ I2(aχ+ + bχ−) + p̂ · σ(aχ+ + bχ−)

I2(aχ+ + bχ−) + p̂ · σ(aχ+ + bχ−)

⎞
⎠

=

√
E

2

⎛
⎝ aχ+ + bχ− + aχ+ − bχ−

aχ+ + bχ− + aχ+ − bχ−

⎞
⎠ =

√
E

2

⎛
⎝ 2aχ+

2aχ+

⎞
⎠ . (147)
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Comparing with eq. (145), we see that a = 1/
√

2. Similarly,

uL(E � m) =

√
E

2

⎛
⎝ I2(aχ+ + bχ−) − p̂ · σ(aχ+ + bχ−)

−I2(aχ+ + bχ−) + p̂ · σ(aχ+ + bχ−)

⎞
⎠

=

√
E

2

⎛
⎝ aχ+ + bχ− − aχ+ + bχ−

−aχ+ − bχ− + aχ+ − bχ−

⎞
⎠ =

√
E

2

⎛
⎝ 2bχ+

−2bχ+

⎞
⎠ , (148)

such that b = 1/
√

2 = a.
We can now boost the rest-frame chirality states, eq. (146) with a = b = 1/

√
2,

uR,L(p = 0) =

√
m

2

⎛
⎝ χ+ + χ−

±(χ+ + χ−)

⎞
⎠ , (149)

to an arbitrary momentum p,

uR,L(p) =

√
m

2

⎛
⎝

√
E+m
2m

I2(χ+ + χ−) ±
√

E−m
2m

p̂ · σ(χ+ + χ−)

±
√

E+m
2m

I2(χ+ + χ−) +
√

E+m
2m

p̂ · σ(χ+ + χ−)

⎞
⎠

=
1

2

⎛
⎝ √

E+ (χ+ + χ−) ±√
E− (χ+ − χ−)

±√
E+ (χ+ + χ−) +

√
E− (χ+ − χ−)

⎞
⎠ , (150)

which agrees with eq. (145) in the high energy limit, E ≈ E+ ≈ E− � m.
While the plane-wave particle chirality spinors uR,L are associated with the spacetime

factor e−i px, they could be written as,

uR,L =
1

2
(u+ + u− ∓ v+ ± v−), (151)

recalling eqs. (109)-(112). As this may lead to confusion, we do not use it further.

6.2 Chirality and Antiparticles

Suppose that the antiparticle of state u is v = ũ = u(C). We can decompose u and v into
chirality states, u = uR + uL, v = vR + vL. Then, recalling the electric-charge-conjugation
operator (94) and that γ2γ5 = −γ5γ2,

ũR,L = iγ2u∗R,L = iγ2 I4 ± γ5

2
u∗ =

I4 ∓ γ5

2
(iγ2u∗) =

I4 ∓ γ5

2
ũ =

I4 ∓ γ5

2
v = vR,L. (152)

Similarly, ṽR,L = uR,L. Note that the antiparticle of uR (in the sense of electric-charge
conjugation) is vR and not vL.
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The eigenstates of the chirality projection operators are called the righthanded(lefthanded)-
chirality states for particles(antiparticles),32,33

PR,L uR,L = uR,L, PR,L vL,R = vL,R. (153)

The electric-charge conjugates of the chirality states (150) are, in the Dirac representa-
tion, recalling eqs. (105)-(106),

vR,L = u
(C)
R,L = iγ2u∗R,L =

1

2

⎛
⎝ iσ2[±

√
E+ (χ∗

+ + χ∗
−) +

√
E− (χ∗

+ − χ∗
−)]

−iσ2[
√
E+ (χ∗

+ + χ∗
−) ±√

E− (χ∗
+ − χ∗

−)]

⎞
⎠

= iγ2u∗R,L =
1

2

⎛
⎝ ±√

E+ (χ+ − χ−) −√
E− (χ+ + χ−)

−√
E+ (χ+ − χ−) ±√

E− (χ+ + χ−)

⎞
⎠ . (154)

In the rest frame of a spin-1/2 antiparticle
√
E+ =

√
2m while

√
E− = 0, so that,

vR,L(p = 0) =

√
m

2

⎛
⎝ ±(χ+ − χ−)

−(χ+ − χ−)

⎞
⎠ , (155)

and in the high-energy limit,

vR,L(E � m) ≈
√
E

⎛
⎝ −χ∓

±χ∓

⎞
⎠ ≈ v±(E � m), (156)

recalling eqs. (111)-(112).

6.3 Helicity Conservation when Chirality Approximates Helicity.

For relativistic spin-1/2 particles, with E � m, their chirality and helicity states are es-
sentially identical, as noted in eqs. (145) and (156). Then, for example, a matrix element
between helicity states such as ū−γμu+ in eq. (120) is well approximated by the matrix
element of chirality states,

ū−γμu+ ≈ ūLγ
μuR

=
1

4
[(I4 − γ5)u]†γ0γμ(I4 + γ5u =

1

4
u†(I4 − γ5)γ0γμ(I4 + γ5)u

=
1

4
u†γ0(I4 + γ5)γμ(I4 + γ5)u =

1

4
ūγμ(I4 − γ5)(I4 + γ5)u

= 0, (157)

recalling that γ5γμ = −γμγ5 and (γ5)2 = I4.
That is, only chirality-conserving matrix elements of the operator γμ are nonzero for

relativistic spin-1/2 states.

32In the hole theory, a righthanded-chirality antiparticle corresponds to the absence of a lefthanded,
negative-energy particle.

33The definition (135) and the relations (153) are independent of the representation of the Dirac matrices.
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6.4 Orthogonality of Chirality States

The chirality states (150) and (154) obey,

u†RuR = u†LuL = v†RvR = v†LvL = 2E, (158)

u†RvL = u†LvR = v†RuL = v†LuR = 2p, (159)

u†RuL = u†LuR = v†RvL = v†LvR = u†RvR = u†LvL = v†RuR = v†LuL = 0. (160)

Noting that, in the Dirac representation,

γ0uR,L =

⎛
⎝ I2 0

0 −I2

⎞
⎠ uR,L =

1

2

⎛
⎝ √

E+ (χ+ + χ−) ±√
E− (χ+ − χ−)

∓√
E+ (χ+ + χ−) −√

E− (χ+ − χ−)

⎞
⎠ , (161)

γ0vR,L =
1

2

⎛
⎝ ±√

E+ (χ+ − χ−) −√
E− (χ+ + χ−)

√
E+ (χ+ − χ−) ∓√

E− (χ+ + χ−)

⎞
⎠ , (162)

and that āb = a†γ0 b, we have,

ūRuL = ūLuR = v̄RvL = v̄LvR = 2m, (163)

ūRuR = ūLuL = v̄RvR = v̄LvL = 0, (164)

ūRvL = ūLvR = v̄RuL = v̄LuR = ūRvR = ūLvL = v̄RuR = v̄LuL = 0. (165)

6.5 Sterile Neutrinos

In the so-called V -A theory [36, 39, 40], only lefthanded particle (righthanded antiparticle)
states participate in the weak interaction. Since the neutrino has no strong or electromagnetic
interaction (presuming that the neutrino has no magnetic moment as well as no electric
charge), then a righthanded neutrino (lefthanded antineutrino) would have no interactions
(except gravity) and could be called sterile.34

While a massless, sterile neutrino is a somewhat trivial concept, the possibility of a
sterile neutrino with mass has led to considerable discussion/controversy, despite lack of
clear experimental evidence for such a particle.35

6.6 Weak-Charge Conjugation

In 1960, Glashow [43] postulated a new symmetry, SU(2)T ⊗ U(1)Y , based on weak isospin
T , and the conserved quantum numbers/charges T3 and weak hypercharge YW = 2(Q− T3).
This set the stage for the development of the Standard Model [44, 45].

34The notion of a sterile neutrino seems to have been introduced by Pontecorvo, on p. 986 of [41].
35A recent experimental limit on the existence of sterile neutrinos is [42].
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Antiparticles have the negative quantum
numbers of those in the table for particles.
Recall that with respect to electric-charge
conjugation,

e
−(C)
R,L = e+

R,L, ν
(C)
R,L = ν̄R,L. (166)

We can introduce the weak-charge-
conjugation operator CW such that CWψ

∗

is the antiparticle of spin-1/2 particle
state ψ in the sense of the table. Then,

e
−(CW)
R,L = e+

L,R, ν
(CW)
R,L = ν̄L,R. (167)

In the Dirac and Weyl representations,36

CW = γ5C =

⎛
⎝ −iσ2 0

0 iσ2

⎞
⎠ , C̆W = γ̆5C̆ =

⎛
⎝ 0 iσ2

iσ2 0

⎞
⎠ . (168)

6.7 Chirality in the Weyl Representation

The transformation of states from the Dirac representation to the Weyl representation is
given in eq. (47). Then, using eqs. (150) and (155) we find,

ŭL(p) =

⎛
⎝ √

E+ (χ+ + χ−) −√
E− (χ+ − χ−)

0

⎞
⎠ , ŭL(0) =

√
m

⎛
⎝ χ+ + χ−

0

⎞
⎠ , (169)

ŭR(p) =

⎛
⎝ 0

√
E+ (χ+ + χ−) +

√
E− (χ+ − χ−)

⎞
⎠ . (170)

v̆L(p) =

⎛
⎝ 0

−√
E+ (χ+ − χ−) −√

E− (χ+ + χ−)

⎞
⎠ , (171)

v̆R(p) =

⎛
⎝ √

E+ (χ+ − χ−) −√
E− (χ+ + χ−)

0

⎞
⎠ . (172)

In their rest frame,

ŭL(0) =
√
m

⎛
⎝ χ+ + χ−

0

⎞
⎠ , ŭR(0) =

√
m

⎛
⎝ 0

χ+ + χ−

⎞
⎠ , (173)

36Here, CW means CWeak rather than CWeyl as in eqs. (200) and (202).
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v̆L(0) =
√
m

⎛
⎝ 0

−χ+ + χ−

⎞
⎠ , v̆R(0) =

√
m

⎛
⎝ χ+ − χ−

0

⎞
⎠ , (174)

and in the high-energy limit,

ŭL(E � m) ≈
√

2E

⎛
⎝ χ−

0

⎞
⎠ ≈ ŭ−(E � m), ŭR(E � m) ≈

√
2E

⎛
⎝ 0

χ+

⎞
⎠ ≈ ŭ+(E � m), (175)

v̆L(E � m) ≈
√

2E

⎛
⎝ 0

−χ+

⎞
⎠ ≈ v̆−(E � m), v̆R(E � m) ≈

√
2E

⎛
⎝ −χ−

0

⎞
⎠ ≈ v̆+(E � m),(176)

recalling eqs. (128)-(131).37

The simplicity of the chirality states in the Weyl representation leads it also to be called
the chiral representation.

The antiparticle (in the sense of electric-charge conjugation) of ŭR,L is ŭ
(C)
R,L = C̆ŭ∗R,L =

v̆R,L. For neutrinos, ŭR and v̆L are sterile in the V -A theory.
The chirality projection operators in the Weyl representation are,

P̆R =
I4 + γ̆5

2
=

⎛
⎝ 0 0

0 I2

⎞
⎠ , P̆L =

I4 − γ̆5

2
=

⎛
⎝ I2 0

0 0

⎞
⎠ , (179)

such that P̆R,L ŭR,L = ŭR,L, while P̆L,R v̆R,L = v̆L,R.

7 Two-Component Theory of Massless Fermions

Until relatively recently, experimental evidence was consistent with neutrinos being massless.
The character of Dirac 4-spinors for massless spin-1/2 states was considered by Weyl (1929)
[10], who formulated a “two component” theory.

For example, the four helicity states (109)-(112) reduce to two independent states when
m = 0, since then v± = −u∓. When m = 0 then E = E+ = E−, so the 4-spinors of massless
particles correspond to the high-energy limit of massive particles, where the helicity spinors

37Using the last form of the Lorentz boost (88) in the Weyl representation on the rest-frame chirality
spinors (173)-(174), we can also write the chirality spinors (169)-(172) with 3-momentum p as,

ŭL(p) =

⎛
⎝ √

pσ(χ+ + χ−)

0

⎞
⎠ , ŭR(p) =

⎛
⎝ 0

√
pσ(χ+ + χ−)

⎞
⎠ , (177)

v̆L(p) =

⎛
⎝ 0

√
pσ(−χ+ + χ−)

⎞
⎠ , v̆R(p) =

⎛
⎝ √

pσ(χ+ − χ−)

0

⎞
⎠ , (178)

as favored by many theorists.
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and the chirality spinors are identical, uR = u+ = −v− = −vL and uL = u− = −v+ = −vR.

uR(θ, φ) = u+(θ, φ) =
√
E

⎛
⎝ χ+

χ+

⎞
⎠ , uL(θ, φ) = u−(θ, φ) =

√
E

⎛
⎝ χ−

−χ−

⎞
⎠ , (180)

vR(θ, φ) = v+(θ, φ) =
√
E

⎛
⎝ −χ−

χ−

⎞
⎠ , vL(θ, φ) = v−(θ, φ) =

√
E

⎛
⎝ −χ+

−χ+

⎞
⎠ . (181)

Note that v± = Cu∗±, using the electric-charge-conjugation operator C = iγ2, eq. (94).
In the Weyl representation, we have,

ŭR(θ, φ) = −v̆L(θ, φ) =
√

2E

⎛
⎝ 0

χ+

⎞
⎠ , ŭL(θ, φ) = −v̆R(θ, φ) =

√
2E

⎛
⎝ χ−

0

⎞
⎠ . (182)

8 Majorana States

In 1937, Majorana speculated [46] that spin-1/2 neutrinos might not be “Dirac” particles
(as considered above in this note), but rather are their own antiparticles (with respect to
electric-charge conjugation).38,39 While this is automatic for massless neutrinos, as seen in
sec. 6, it is nontrivial for massive neutrinos.

We saw in sec. ecc above that the electric-charge-conjugation transformation ψ̃ = iγ2ψ
∗

of a 4-spinor state ψ leads to its antiparticle state ψ̃. Majorana spinors (when constructed
from spinors that obey the Dirac equation) are their own antiparticles, which suggests that
they are combinations of Dirac particles u and antiparticles v. So, recalling eqs. (42) and
(95) we consider a general Majorana spinor of the form,

ψ√
E+

= au e−ipx + bv eipx = a e−ipx

⎛
⎝ χ

p·σ
E+m

χ

⎞
⎠ + b eipx

⎛
⎝ p·σ

E+m
χ̃

χ̃

⎞
⎠ , (183)

where χ and χ̃ = −iσ2χ
∗ (χ = iσ2χ̃

∗, from eq. (96)) are 2-spinors with unit normalization,
E+ = E + m, and |a|2 + |b|2 = 1, so that ψ̄ψ = 2m. Then, the requirement that this state
be its own antiparticle implies (omitting some factors e±i px),

ψ = ψ(C) = ψ̃ = iγ2ψ
∗, (184)

and in more detail,
ψ√
E+

=
ψ(C)

√
E+

=
ψ̃√
E+

= ãu+ b̃v = a∗ũ+ b∗ṽ = a∗iγ2u∗ + biγ2v∗

=

⎛
⎝ 0 iσ2

−iσ2 0

⎞
⎠
⎡
⎣a∗ eipx

⎛
⎝ χ∗

p·σ∗
E+m

χ∗

⎞
⎠+ b∗ e−ipx

⎛
⎝ p·σ∗

E+m
χ̃∗

χ̃∗

⎞
⎠
⎤
⎦ (185)

= a∗

⎛
⎝ p·σ

E+m
(−iσ2χ

∗)

−iσ2χ
∗

⎞
⎠ + b∗

⎛
⎝ iσ2χ̃

∗

p·σ
E+m

(iσ2χ̃
∗)

⎞
⎠ = a∗

⎛
⎝ p·σ

E+m
χ̃

χ̃

⎞
⎠ + b∗

⎛
⎝ χ

p·σ
E+m

χ

⎞
⎠ ,

38See also [47].
39Much of the discussion below follows Prob. 7.51 of [7].
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recalling that σ2σ
∗ = −σσ2. Hence, b = a∗ (= 1/

√
2), and v = ũ (u = ṽ), such that

Majorana 4-spinors have only 2 independent components (and always contain both a Dirac-
particle and -antiparticle spinor).40 A consequence is that the top and bottom 2-spinors, χt

and χb, of a Majorana 4-spinor state ψ are related by,

ψ√
E+

=

⎛
⎝ χt

χb

⎞
⎠ , χb = −iσ2χ

∗
t , χt = iσ2χ

∗
b. (186)

8.1 Majorana and the Dirac Equation

The Dirac equation (1), iγμ∂μψ = mψ, can also be written for Majorana states (184) as,

iγμ∂μψ = mψ(C) = mψ̃, (187)

which is sometimes called the Majorana equation.

8.2 Majorana Helicity 4-Spinors

First, we consider the spin-up/down helicity 2-spinors χ±, eqs. (105)-(106),

χ+ =

⎛
⎝ cos θ

2
e−iφ/2

sin θ
2
eiφ/2

⎞
⎠ , χ− =

⎛
⎝ − sin θ

2
e−iφ/2

cos θ
2
eiφ/2

⎞
⎠ , (188)

for which χ̃± = −iσ2χ
∗
± = ±χ∓.Taking a = b = 1/

√
2, the Majorana helicity 4-spinors ψ±

are their own antiparticles, ψ± = ψ̃±, with,

ψ±√
E+/2

= e−ipx

⎛
⎝ χ±

± p
E+m

χ±

⎞
⎠ + eipx

⎛
⎝ − p

E+m
χ∓

±χ∓

⎞
⎠ . (189)

8.3 Majorana Chirality 4-spinors.

The following states, related to chirality,

ψR,L = ψ̃R,L =
uR,L + vR,L√

2
=
νR,L + ν̄R,L√

2
, (190)

are Majorana states (but note that PR,LψR,L �= ψR,L). Furthermore,

ψ = ψ̃ = aψR + bψL =
aνR + aνR + bνL + bνL√

2
, (191)

40The Majorana two-component theory applies to particle with mass (but without electric charge), unlike
the Weyl two-component theory of massless fermions (sec. 6 above).
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is a Majorana state for any real numbers a and b that obey |a|2 + |b|2 = 1.41

An implication is that a Majorana state created with nominally one chirality can later
interact via the opposite chiralty, which permits the phenomenon of neutrinoless double-beta
decay (sec. 8.6.2 below).

8.4 Majorana States Based on Weak-Charge Conjugation

Another possible vision of Majorana states is that antiparticles are defined with respect to
weak-charge conjugation, as mentioned in sec. 6.6 above.

Then, instead of, eq. (190), we would consider,

ψ′
R,L =

νR,L + ν̄R,L√
2

. (193)

8.5 Present Experiments Exclude that the Observed Neutrinos

are Majorana States

In my note [51] I discuss how present experimental data exclude that the observed (massive)
neutrinos are Majorana states of the forms (190) and (193). The argument for the form
(190) also applies to (191), since in both cases the production of such a Majorana neutrino
state includes a sterile neutrino with 50% probability, which cannot be accommodated in
the observed decays of the Z0 weak boson.

This conclusion does not depend on the use of the Dirac representation, and hold for
other representations, such as that of Weyl, as well.

8.6 Majorana Mass

However, the observed, massive neutrinos could be “Majorana” in a different sense, having
“Majorana mass” terms in their Lagrangian, such that Majorana mass mL is associated with
a transition between νL and νR, and mR with a transition between the sterile neutrinos νR

and νL.42

Majorana mass terms do not necessarily imply the existence of Majorana (neutrino)
states.43

8.6.1 The “See-Saw” Mechanism

An appealing application of Majorana mass terms is the so-called “see-saw” mechanism
[53, 54], in which neutrinos are associated with a Dirac mass mD as well as Majorana masses

41In the compressed notation introduced in secs. 3.2-3.3, Majorana states of the form (191) can be written
in the Weyl representation as,

ψ̆ =

⎛
⎝ √

pσ [a(χ+ − χ−) + b(χ+ + χ−)]
√
pσ [a(χ+ + χ−) + b(−χ+ + χ−)]

⎞
⎠ =

⎛
⎝ √

pσ [(a+ b)χ+ − (a− b)χ−]
√
pσ [(a− b)χ+ + (a+ b)χ−]

⎞
⎠ . (192)

42The concept of a Majorana mass may be been first discussed (briefly) by McClennan (1957) [52].
43These two concepts are often confused. See the warning in sec. 5 of [55].
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mL and mR, with a mass matrix of the form,⎛
⎝ mL mD

mD mR

⎞
⎠ . (194)

where the “ideal” mass mL of the ordinary neutrino could be 0, while that of the (sterile)
partner is mR, and mD describes the coupling between the two “ideal” states. In a “grand-
unified” theory, it could be that mR ≈ 1015 GeV, the grand-unified energy scale, and mD ≈
mHiggs as representative of the electroweak energy scale, such that mL � mD � mR.

The eigenvalues λ of the mass matrix (194) are the roots of the determinant equation,∣∣∣∣∣∣
mL − λ mD

mD mR − λ

∣∣∣∣∣∣ = λ2 − (mR +mL)λ+mRmL −m2
D = 0. (195)

Then, for mL � mD � mR,

λ =
mR +mL ±√(mR +mL)2 − 4mRmL + 4m2

D

2

=
mR +mL ±√(mR −mL)2 + 4m2

D

2
≈ mR +mL

2
± mR −mL

2

(
1 +

2m2
D

(mR −mL)2

)

≈ mR, mL − m2
D

mR

. (196)

The mass of the heavier eigenstate is essentially unaffected, mν′ ≈ mR, while the mass
of the “ordinary” neutrino, mν ≈ mL − m2

D/mR, is affected by the coupling mD only if
mL ≈ m2

D/mR ≈ mν. We suppose the latter holds, so the “prediction” here is both a bit
tentative and qualitative, with mν ≈ (100 GeV)2/1015 GeV = 10−11 GeV = 0.01 eV, for
mR = 1015 GeV and mD = 100 GeV.

This prescription as to how a very light mass might appear in a theory involving two
larger, and disparate mass scales is generically called the “see-saw” mechanism, and many
variants appear in the literature.

8.6.2 Neutrinoless Double-Beta Decay

In 1935, Goeppert-Mayer made a calculation [56] of the process A → A′eeνν, so-called
2-neutrino double-beta decay, which was first definitively observed in 1987 [57].44

It was realized by Furry (1939) [58] that, if neutrinos behave according to Majorana’s
view, there could exist the phenomenon of neutrinoless double-beta decay, A → A′ee.

44For an estimate of the 2-neutrino-double-beta-decay lifetime, we note that a neutron has radius r ≈ 1
fermi, so the time scale for collisions of quarks inside it is r/c ≈ 3 × 10−23 s. The neutron lifetime is about
103 s, so the probability of a weak interaction occurring during each collision is about 3 × 10−26.

The probability of two such weak interactions occuring in a nucleus within a single collision time is the
square of this, and hence the lifetime for double-beta decay is about 3 × 1025 times the neutron lifetime,
i.e., ≈ 3 × 1028 s. Recalling that a year contains about π × 107 s, we estimate that the lifetime against
double-beta decay is 1021 years (which agrees with experiment to within an order of magnitude).
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Further, if the nuclear matrix elements were similar for 2-neutrino double-beta decay and
neutrinoless double-beta decay, then the rate for the latter would be much larger (and the
lifetime much shorter), because the 3-body phase space for the final state of the latter
reaction is much larger than the 5-body phase space for the former.

To date, no neutrinoless double-beta decay has been observed, with limits on the lifetime
(> 1025 yr) being longer than that for observed 2-neutrino decays.45

In the neutrinoless double-beta-decay reaction ν A → A′ e−e− via the decay of two neu-
trons in the nucleons A, the virtual neutrino (ν in the figure below) needs to have amplitudes
to be both a νR and a νL.

This could be due to the neutrino being a Majorana state of the form (191) with both
nonzero a and b, or it could be due to a Dirac neutrino associated with Majorana-mass
terms. According to the claim in sec. 8.5 above, only the latter could be the case.

A Other Representations of the Dirac Matrices

The Dirac representation used in this note is,46

γ0
D =

⎛
⎝ I2 0

0 −I2

⎞
⎠ , γi

D =

⎛
⎝ 0 σi

−σi 0

⎞
⎠ , γ5

D =

⎛
⎝ 0 I2

I2 0

⎞
⎠ , CD = iγ2 =

⎛
⎝ 0 iσ2

−iσ2 0

⎞
⎠ ,(197)

where I2 is the 2 × 2 unit matrix, γ5 = iγ0γ1γ2γ3, and σi, i = 1, 2, 3 are the Pauli spin
matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (σj)

2 = I2, σjσk = iεjkl σl. (198)

Pauli “4-vectors” can be defined as,

σμ = (I2,σ), σμ = (I2,−σ). (199)

The Weyl (chiral) representation used in this note is,47

γμ
W =

⎛
⎝ 0 σμ

σμ 0

⎞
⎠ , γ5

W =

⎛
⎝ −I2 0

0 I2

⎞
⎠ , CW = −iγ2

W =

⎛
⎝ 0 −iσ2

iσ2 0

⎞
⎠ . (200)

45See, for example, [59].
46 γ0 = α4 = β = ρ3 of pp. 614-615 of [1], while γj = αj = ρ1σj, where the 4× 4 matrices σj and ρj are

given on p. 614.
47This form of the Weyl representation may have first appeared in eq. (3) of [60].
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The Weyl basis can be obtained from the Dirac basis as,

γμ
W = UWγ

μ
DU†

W, ψW = UWψD, UW =
1√
2

⎛
⎝ I2 −I2

I2 I2

⎞
⎠ . (201)

The Weyl (chiral) representation is sometimes written with all matrices the negative of
the above.

Yet another Weyl representation is,

γ0
W′ =

⎛
⎝ 0 I2

I2 0

⎞
⎠ , γi

W′ =

⎛
⎝ 0 −σi

σi 0

⎞
⎠ , γ5

W′ =

⎛
⎝ I2 0

0 −I2

⎞
⎠ , CW′ =

⎛
⎝ 0 iσ2

−iσ2 0

⎞
⎠ . (202)

This alternate Weyl basis can be obtained from the Dirac basis as,

γμ
W′ = UW′γμ

DU†
W′ , ψW′ = UW′ψD, UW′ =

1√
2

⎛
⎝ I2 I2

I2 −I2

⎞
⎠ . (203)

A Majorana representation, in which the γμ are imaginary, is,

γ0
M =

⎛
⎝ 0 σ2

σ2 0

⎞
⎠ , γ1

M =

⎛
⎝ iσ3 0

0 iσ3

⎞
⎠ , γ2

M =

⎛
⎝ 0 −σ2

σ2 0

⎞
⎠ , γ3

M =

⎛
⎝ −iσ1 0

0 −iσ1

⎞
⎠ ,

γ5
M =

⎛
⎝ σ2 0

0 σ2

⎞
⎠ , CM =

⎛
⎝ −iI2 0

0 iI2

⎞
⎠ .(204)

This Majorana basis can be obtained from the Dirac basis as,

γμ
M = UMγ

μ
DU†

M, MψM = UψD, UM =
1√
2

⎛
⎝ I2 σ2

−σ2 −I2

⎞
⎠ =

γ0
D + γ2

D√
2

. (205)

Another Majorana representation is,

γ0
M′ =

⎛
⎝ 0 σ2

σ2 0

⎞
⎠ , γ1

M′ =

⎛
⎝ iσ1 0

0 iσ1

⎞
⎠ , γ2

M′ =

⎛
⎝ 0 σ2

−σ2 0

⎞
⎠ , γ3

M′ =

⎛
⎝ iσ3 0

0 iσ3

⎞
⎠ .(206)
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