Does $\nabla \cdot \mathbf{J} = 0$ **Imply** $\nabla \cdot \mathbf{A} = 0$?

Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(November 11, 2022)

1 Problem

In electromagnetism, the condition $\nabla \cdot \mathbf{J} = 0$ on the electric-current density \mathbf{J} implies that the electric charge density ρ is time independent, according to the continuity equation $\nabla \cdot \mathbf{J} + \partial \rho / \partial t = 0$ (conservation of electric charge), which in turn implies that \mathbf{J} is timeindependent (steady currents). The condition $\nabla \cdot \mathbf{J} = 0$ also implies the lines of \mathbf{J} form closed loops.¹

That is, $\nabla \cdot \mathbf{J} = 0$, for nonzero \mathbf{J} , implies both electrostatics and magnetostatics.² It is sometimes assumed that for static electromagnetism, $\nabla \cdot \mathbf{A} = 0$ (perhaps following Maxwell, Art. 617 of [5]), where \mathbf{A} is the electromagnetic vector potential, which is related to the electromagnetic fields \mathbf{E} and \mathbf{B} by,

$$\mathbf{E} = -\boldsymbol{\nabla}V - \frac{\partial \mathbf{A}}{\partial t}, \qquad \mathbf{B} = \boldsymbol{\nabla} \times \mathbf{A}, \tag{1}$$

in SI units, where V is the electric scalar potential.

But, does $\nabla \cdot \mathbf{J} = 0$ actually imply that $\nabla \cdot \mathbf{A} = 0$?

2 Solution

In general, the answer is NO.

One way to see this is to consider the vector potential **A** in the so-called Poincaré gauge (see sec. 9A of [6] and [7, 8, 9]),³ where the gauge condition is $\mathbf{A} \cdot \mathbf{x} = 0$, and the potentials are computed via integrals along the line from the (arbitrary) origin to the point \mathbf{x} of observation,

$$V(\mathbf{x},t) = -\mathbf{x} \cdot \int_0^1 du \, \mathbf{E}(u\mathbf{x},t), \qquad \mathbf{A}(\mathbf{x},t) = -\mathbf{x} \times \int_0^1 u \, du \, \mathbf{B}(u\mathbf{x},t). \tag{2}$$

The divergence of the Poincaré-gauge vector potential is,

$$\boldsymbol{\nabla} \cdot \mathbf{A} = \mathbf{x} \cdot \int_0^1 u \, du \, \boldsymbol{\nabla} \times \mathbf{B}(u\mathbf{x}, t) = \mathbf{x} \cdot \int_0^1 u \, du \, \left(\mu_0 \mathbf{J}(u\mathbf{x}, t) + \frac{1}{c^2} \frac{\partial \mathbf{E}(u\mathbf{x}, t)}{\partial t} \right). \tag{3}$$

¹As is the case for lines of the magnetic field **B**, which obey $\nabla \cdot \mathbf{B} = 0$, field lines of **J** (when its divergence is zero) do not necessarily form simple (one-turn) loops. But, this does not mean that the field lines can be "open-ended", as implied, for example, in [1]-[3]; a nonphysical, uniform field is the exception.

A subtler issue was discussed in [4], as to whether if the field lines make an infinite number of turns they should be called "closed". The view of the present author is that they should.

²(Unphysical) source-free electromagnetic waves have $\mathbf{J} = 0$, and hence $\nabla \cdot \mathbf{J} = 0$ also.

³The Poincaré gauge is also called the multipolar gauge [10, 11].

In static examples with only azimuthal currents we have that $\nabla \cdot \mathbf{A} = 0$ in the Poincaré gauge when the origin is on the symmetry axis,⁴ but for more general current densities (and for more general choice of the origin), $\nabla \cdot \mathbf{A} \neq 0$ (in this gauge).

2.1 YES, If the Vector Potential Can Be Set to Zero at Infinity (Nov. 18, 2022)

As noted, for example, in sec. 5.4.1 of $[13]^5$ and on p. 53 of [14], if we can enforce the auxiliary condition that the vector potential vanishes at infinity (in all directions) for steady currents, then it follows that $\nabla \cdot \mathbf{A} = 0$ everywhere.

References

- J. Slepian, Lines of Force in Electric and Magnetic Fields, Am. J. Phys. 19, 87 (1951), http://kirkmcd.princeton.edu/examples/EM/slepian_ajp_19_87_51.pdf
- K.L. McDonald, Topology of Steady Current Magnetic Fields, Am. J. Phys. 22, 596 (1954), http://kirkmcd.princeton.edu/examples/EM/mcdonald_ajp_22_586_54.pdf
 K.L. McDonald is not related to the present author.
- M. Lieberherr, The magnetic field lines of a helical coil are not simple loops, Am. J. Phys. 78, 1117 (2010), http://kirkmcd.princeton.edu/examples/EM/lieberherr_ajp_78_1117_10.pdf
- [4] S.M. Ulam and J. Pasta, Magnetic Lines of Force, LA-1557 (1953), http://kirkmcd.princeton.edu/examples/EM/ulam_la-1557_53.pdf
- [5] J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 2 (Clarendon Press, 1873), http://kirkmcd.princeton.edu/examples/EM/maxwell_treatise_v2_73.pdf
- [6] J.D. Jackson, From Lorenz to Coulomb and other explicit gauge transformations, Am. J. Phys. 70, 917 (2002), http://kirkmcd.princeton.edu/examples/EM/jackson_ajp_70_917_02.pdf
- [7] W. Brittin et al., Poincaré gauge in electrodynamics, Am. J. Phys. 50, 693 (1982), http://kirkmcd.princeton.edu/examples/EM/brittin_ajp_50_693_82.pdf
 This paper is likely the first discussion of the Poincaré gauge with that name.
- [8] B.-S.K. Skagerstam et al., A note on the Poincaré gauge, Am. J. Phys. 51, 1148 (1983), http://kirkmcd.princeton.edu/examples/EM/skagerstam_ajp_51_1148_83.pdf
- [9] F.H.G. Cornish, The Poincaré and related gauges in electromagnetic theory), Am. J. Phys. 52, 460 (1984), http://kirkmcd.princeton.edu/examples/EM/cornish_ajp_52_460_84.pdf
- [10] R.G. Woolley, The Electrodynamics of Atoms and Molecules, Adv. Chem. Phys. 33, 153 (1975), http://kirkmcd.princeton.edu/examples/EM/woolley_acp_33_153_75.pdf

⁴For an example of this type, see [12].

⁵Equation (5.63) implies that $\nabla \cdot \mathbf{A} = 0$.

- [11] D.H. Kobe, Gauge transformations and the electric dipole approximation, Am. J. Phys. 50, 128 (1982), http://kirkmcd.princeton.edu/examples/EM/kobe_ajp_50_128_82.pdf
- [12] K.T. McDonald, Vector Potential of a Long Solenoid in the Poincaré Gauge (Jan. 15, 2017), http://kirkmcd.princeton.edu/examples/poincare.pdf
- [13] D.J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall, 1999), http://kirkmcd.princeton.edu/examples/EM/griffiths_em3.pdf
- [14] R.M. Wald, Advanced Classical Electromagnetism (Princeton U. Press, 2022), http://kirkmcd.princeton.edu/examples/EM/wald_22_ch4.pdf