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1 Problem

Discuss the kinetic energy of the conduction electrons, as well as the energy they lose to
Joule heating, in the Drude Model

2 Solution

Maxwell’s equations were formulated by prior to our present understanding of electrical
currents as due to the motion of electrons.

We follow Drude [1] (1900) in making a simple model of the conductivity σ of a metal as
due to inelastic collisions at frequency f = 1/τ of the conduction electrons with the lattice
of metallic ions. If the effect of a collision is to reset electron’s momentum mẋ to zero,
then for frequencies such that ωτ < 1 this discrete momentum change can be represented
by a velocity-dependent friction that acts continually between collisions, and the equation
of motion of an electron in an electric field E = E0 e−iωt is approximately,1

mẍ = −eE− mẋ

τ
, (1)

whose solution is,

x = − ieτE

mω(1 − iωτ)
, ẋ = − eτE

m(1 − iωτ)
, (2)

Then, the current density J is given by,

J = −Neẋ =
Ne2τ

m(1 − iωτ )
E = σE (3)

where N (≈ 9×1028/m3 for copper) is the (volume) number density of conduction electrons.2

The frequency-dependent metallic conductivity σ has the form,

σ =
Ne2τ

m(1 − iωτ )
=

σ0

1 − iωτ
=

ε0ω
2
pτ

1 − iωτ
, (4)

1We do not include Lorentz’ radiation reaction force,Frad = (μ0e
2/6πc) ȧ, in the equation of motion (1)

because the conduction electrons do not emit any net radiation. However, if we did include the radiation
reaction force −ω2τ0mẋ, the effective damping constant 1/τ +ω2τ0 would differ from 1/τ by only a part per
million at optical frequencies (and much less than this at rf frequencies). This result tells us that radiation
of energy by the conduction electrons is negligible.

2At very high frequencies all atomic electrons participate in the current, and N is total number density
of electrons (≈ 1.2 × 1030/m3 for copper).
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with,

σ0 =
Ne2τ

m
, and ωp =

√
Ne2

ε0m
, (5)

where σ0 (≈ 6 × 107 mho/m for copper) is the DC conductivity, and ωp (≈ 1016 s−1 for
copper) is the plasma frequency. There are three frequency regimes of interest in Drude’s
model, ω � 1/τ , 1/τ <∼ ω < ωp, and ω > ωp. For copper, the characteristic collision
time is τ = σ0m/Ne2 ≈ 2 × 10−14 s. Thus, for radio frequencies (ω ≈ 109 s−1, say, for
which the wavelength is λ = 2πc/ω ≈ 2 m), ωτ � 1 and the Drude-model conductivity
is well approximated by its real, DC value. For optical frequencies (ω ≈ 4 × 1015 s−1),
ωτ > 1 and Drude’s model predicts that the conductivity is essentially pure imaginary,
σoptical ≈ −iε0ω

2
p/ω. Drude’s classical electron model of electrical conductivity is less accurate

at optical than rf frequencies, and we must turn to a quantum model for better understanding
of metallic conductivity in the optical regime. See, for example, secs. 86-87 of [2]. Drude’s
model is again rather accurate when ω � ωp, but as we shall see in sec. 3.2, conductors are
essentially transparent in this limit.

One significance of the small imaginary part of the conductivity (4) is that it accounts
for the power associated with changes in the time-varying kinetic energy of the conduction
electrons.3 The imaginary part of the conductivity leads to a term in the current density
J = σE that is out of phase with the electric field, and hence part of the power J · E that
is delivered to the current J causes no time-averaged change in the energy of the system, as
expected for the oscillatory kinetic energy of the conduction electrons.

In greater detail, if we write the electric field at some point inside the conductor as
Ec e−iωt, then the physical electric field is,

E = Re(Ec e−iωt) = Re(Ec) cos ωt + Im(Ec) sin ωt, (6)

and the physical current density is,

J = Re(σE) = Re

[
σ0

1 + iωτ

1 + ω2τ 2
Ec e−iωt

]
(7)

=
Ne2τ

m(1 + ω2τ2)
{[Re(Ec) cos ωt + Im(Ec) sinωt] − ωτ [Re(Ec) sinωt− Im(Ec) cos ωt]}.

Then, the physical density of power delivered to the current density is,

J · E =
σ0

1 + ω2τ 2
{[Re(Ec) cos ωt + Im(Ec) sinωt]2 (8)

− Ne2ωτ 2

m(1 + ω2τ 2)
[Re(Ec) sin ωt − Im(Ec) cos ωt] · [Re(Ec) cos ωt + Im(Ec) sinωt].

The first term of eq. (8) is, of course, the power dissipated by Joule heating. We relate the
second term to the time rate of change of the kinetic energy of the conduction electrons,

d

dt
uKE =

d

dt

(
Nmv2

2

)
= Nmv · a, (9)

3The velocity of a conduction electron has the form vrandom + vdrift where vrandom � vdrift. The total
kinetic energy of these electron is

∑
m(vrandom + vdrift)2/2 =

∑
mv2

random/2 +
∑

mv2
drift/2. The oscillatory

part of the kinetic energy is
∑

mv2
drift/2, the density of which we call uKE.
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by noting that the velocity of the conduction electrons is v = −J/Ne, so that their acceler-
ation a = dv/dt is,

a =
eωτ

m(1 + ω2τ 2)
{[Re(Ec) sin ωt− Im(Ec) cos ωt] + ωτ [Re(Ec) cos ωt + Im(Ec) sin ωt]}.(10)

Thus, for ωτ � 1, eqs. (7) and (9)-(10) show that the second term of eq. (8) is the time
rate of change of the (drift) kinetic energy of the conduction electrons (plus terms of order
ω2τ 2).4

Although Drude’s model gives only an approximate understanding of conductors at op-
tical frequencies, it does predict that in this regime the power dissipated by Joule heating
is small compared to the power that changes the kinetic energy of the conduction electrons,
and so provides some insight as to a microscopic view of very good conductors in which
quasi-free electrons are the charge carriers.
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4An implication is that the (drift) kinetic energy of conduction electrons is part of the “electromagnetic
field” energy. In AC circuits with negligible capacitance, this field energy is largely “magnetic”.

While Maxwell did call the “magnetic” field energy a “kinetic” energy, he did not consider that electric
currents involve moving electric charges. See, for example, [3].
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