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1 Problem

Discuss the stability of the orbital motion of a dumbell about a massive force center M (such
as the Earth) supposing the dumbell consists of two masses m � M joined by a massless,
rigid rod of length 2a, where a is not necessarily small compared to the distance r of the
center of the dumbell from the force center. It suffices to consider only motion in a plane.

2 Solution

For steady motion in a plane, and coordinates r, θ and φ as in the figure above, there exist
equilibrium configurations with angle φ = 0 and π/2, with equilibrium values r0 and θ̇0

related by Kepler’s 3rd law (at least for a � r0).
1 It seems unlikely that the equilibrium

with φ = π/2 is stable, while for a � r0 we anticipate that the equilibrium with φ0 = 0 is
stable. However, the case of a comparable to r0 and φ0 = 0 is not immediately evident.

We would like to develop an effective potential Veff for the general, planar motion, such
that the sign of ∂2Veff(r0)/∂r2 determines the stability of small oscillations about the equilib-
ria. However, the angular momentum of the dumbell about the force center is not a conserved
quantity, so we cannot use the form of the effective potential for orbits of spherical/point
masses.

We note that the kinetic energy of the dumbell is,

T = m(ṙ2 + r2θ̇
2
) + ma2(θ̇ + φ̇)2, (1)

and its potential energy is,

V (r, φ) = −GMm

(
1

r1
+

1

r2

)
, r2

1,2(r, φ) = r2 ∓ 2ar cos φ + a2. (2)

The Lagrangian L = T − V does not depend explicitly on time, nor on coordinate θ, so the
Hamiltonian/energy of the system is constant, as is the generalized momentum,

pθ =
∂L
∂θ̇

= 2m(r2 + a2) θ̇, θ̇ =
pθ

2m(r2 + a2)
. (3)

1There also exists an equilibrium for the dumbell perpendicular to the plane of the orbit of the center of
mass, and we anticipate that this is unstable.
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With this, we can write the conserved energy as,

E = T + V = mṙ2 +
mr2 p2

θ

4m2(r2 + a2)2
+ ma2

(
p2

θ

4m2(r2 + a2)2
+ φ̇

2
)

+ V (r, φ)

≡ mṙ2 + ma2φ̇
2
+ Veff(r, φ), Veff =

p2
θ

4m(r2 + a2)
+ V, (4)

∂Veff

∂r
= − rp2

θ

2m(r2 + a2)2
+ GMm

(
r − a cos φ

r3
1

+
r + a cosφ

r3
2

)
, (5)

∂2Veff

∂r2
= − p2

θ

2m(r2 + a2)2
+

2r2p2
θ

m(r2 + a2)3

+GMm

(
1

r3
1

+
1

r3
2

− 3(r − a cos φ)2

r5
1

+
3(r + a cos φ)2

r5
2

)
, (6)

∂Veff

∂φ
= GMm

(
ar sinφ

r3
1

− ar sinφ

r3
2

)
, (7)

∂2Veff

∂φ2 = GMm

(
ar cos φ

r3
1

− ar cosφ

r3
2

− 3a2r2 sin2 φ

r5
1

− 3a2r2 sin2 φ

r5
2

)
. (8)

The equations of motion for r and φ are,

∂E

∂r
= 0 = 2mr̈ +

∂Veff

∂r

∂E

∂φ
= 0 = 2ma2φ̈ +

∂Veff

∂φ
. (9)

The equilibria are related by r̈ = 0 = φ̈ = 0, and hence,

∂Veff(r0, φ0)

∂r
= 0 =

∂Veff(r0, φ0)

∂φ
. (10)

Also, the motion for small departures from equilibrium is springlike (stable) if,

∂2Veff(r0, φ0)

∂r2
> 0,

∂2Veff(r0, φ0)

∂φ2 > 0. (11)

From eqs. (2) and (10) we have, noting that the equilibrium angular velocity of the center
of mass of the dumbell is,

θ̇0 ≡ Ω = pθ/2m(r2
0 + a2) , pθ = 2mΩ(r2

0 + a2), (12)

∂Veff(r0, φ0)

∂r
= 0 = −2mr0Ω

2 + GMm

(
r0 − a cos θ0

r3
1,0

+
r0 + a cos θ0

r3
2,0

)
, (13)

∂Veff(r0, φ0)

∂φ
= 0 = GMm

(
a sin θ0

r3
1,0

− a sin θ0

r3
2,0

)
. (14)

Equation (14) indicates that equilibria exist for θ0 = 0 with r1,0 = r0 − a and r2,0 = r0 + a,

and π/2 with r1,0 = r2,0 =
√

r2
0 + a2. For θ0 = 0, eq. (13) tells us that,

r0 =
GM

2Ω2

(
1

(r0 − a)2
+

1

(r0 + a)2

)
=

GM

Ω2

r2
0 + a2

(r2
0 − a2)2

(θ0 = 0), (15)
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and for θ0 = π/2,

r0 =
GM

2Ω2

2r0

(r2
0 + a2)3/2

, GM = Ω2(r2
0 + a2)3/2, (θ0 = π/2). (16)

As to stability of the equilibria, we see from eq. (8) that ∂2Veff(r0, φ0)/∂φ2 > 0 for φ0 = 0,
but is negative for φ0 = π/2. Hence, the equilibrium at φ0 = π/2 is not stable.

For what it’s worth, eqs. (6), (12) and (16) tell us that,

∂2Veff(r0, π/2)

∂r2
= − p2

θ

2m(r2
0 + a2)2

+
2r2

0p
2
θ

m(r2
0 + a2)3

+
2GMm

(r2
0 + a2)3/2

= −2mΩ2(r2
0 + a2)2

(r2
0 + a2)2

+
8mΩ2r2

0

r2
0 + a2

+ 2mΩ2 =
8mΩ2r2

0

r2
0 + a2

> 0 (φ0 = π/2). (17)

Finally, for φ0 = 0, using eq, (15),

∂2Veff(r0, 0)

∂r2
= − p2

θ

2m(r2
0 + a2)2

+
2r2

0p
2
θ

m(r2
0 + a2)3

+GMm

(
1

(r0 − a)3
+

1

(r0 + a)3
− 3(r0 − a)2

(r0 − a)5
+

3(r0 + a)2

(r0 + a)5

)
,

= −2mΩ2 +
8mr2

0Ω
2

r2
0 + a2

− 2GMm

(
1

(r0 − a)3
+

1

(r0 + a)3

)

= −2mΩ2 +
8mr2

0Ω
2

r2
0 + a2

− 2mΩ2r0(r
2
0 − a2)2

r2
0 + a2

(
1

(r0 − a)3
+

1

(r0 + a)3

)
(φ0 = 0). (18)

For a � r, ∂2Veff(r0, 0)/∂r2 ≈ 2mΩ2 > 0, and the equilibrium at θ0 = 0 is stable. However,
for a large enough, the third, negative term in the last form of eq. (18) dominates, and the
equilibrium at φ0 = 0 is unstable. A numerical computation indicates that this equilibrium
is unstable for a > r0/3, as shown in the figure below, from [1].

The third equilibrium, with the dumbell perpendicular to the plane of the orbit of its
center of mass, is discussed in [1] and shown to be unstable.
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2.1 Skyhook

A variant of a dumbell satellite is the “skyhook”, a long, rigid rod in a geosynchronous orbit,
with its lower end just above the surface of the Earth.2 For this, a ≈ 12rE and r0 ≈ 13rE , so
we infer that the skyhook is unstable (although in principle it could be stabilized by a very
large mass at its upper end, in geosynchronous orbit).

2.2 Pendulum in Orbit

Another related problem is a pendulum in orbit, connected to a much larger mass also in
orbit [10]-[12].
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