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1 Problem

Discuss the stability of the orbital motion of a dumbell about a massive force center M (such
as the Earth) supposing the dumbell consists of two masses m < M joined by a massless,
rigid rod of length 2a, where a is not necessarily small compared to the distance r of the
center of the dumbell from the force center. It suffices to consider only motion in a plane.
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For steady motion in a plane, and coordinates r, # and ¢ as in the figure above, there exist
equilibrium configurations with angle ¢ = 0 and 7/2, with equilibrium values ry and 0,
related by Kepler’s 3™ law (at least for a < 79).! It seems unlikely that the equilibrium
with ¢ = 7/2 is stable, while for a < ry we anticipate that the equilibrium with ¢, = 0 is
stable. However, the case of a comparable to ry and ¢, = 0 is not immediately evident.

We would like to develop an effective potential V.g for the general, planar motion, such
that the sign of 9*Vig(r¢)/0r? determines the stability of small oscillations about the equilib-
ria. However, the angular momentum of the dumbell about the force center is not a conserved
quantity, so we cannot use the form of the effective potential for orbits of spherical /point
masses.

We note that the kinetic energy of the dumbell is,

2 Solution

T = m(r? —1—7"292) +ma2(9+¢)2, (1)
and its potential energy is,
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The Lagrangian £ =T — V does not depend explicitly on time, nor on coordinate #, so the
Hamiltonian/energy of the system is constant, as is the generalized momentum,
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I There also exists an equilibrium for the dumbell perpendicular to the plane of the orbit of the center of
mass, and we anticipate that this is unstable.



With this, we can write the conserved energy as,
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The equations of motion for r» and ¢ are,
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The equilibria are related by ©# = 0 = ¢ = 0, and hence,
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Also, the motion for small departures from equilibrium is springlike (stable) if,
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From eqs. (2) and (10) we have, noting that the equilibrium angular velocity of the center
of mass of the dumbell is,
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Equation (14) indicates that equilibria exist for 8y = 0 with 719 =179 —a and 790 = 19 + a,
and 7/2 with 71 o = rog = /12 + a?. For 6y = 0, eq. (13) tells us that,
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and for 6y = /2,
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ro GM = Q*(rg +a*)*?, (6o =7/2). (16)

As to stability of the equilibria, we see from eq. (8) that 0*V.g (1o, ¢y) /00> > 0 for ¢, = 0,
but is negative for ¢, = m/2. Hence, the equilibrium at ¢, = 7/2 is not stable.
For what it’s worth, eqgs. (6), (12) and (16) tell us that,
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Finally, for ¢, = 0, using eq, (15),
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For a < r, 8*Veg(ro,0)/0r* &~ 2mQ? > 0, and the equilibrium at 6y = 0 is stable. However,
for a large enough, the third, negative term in the last form of eq. (18) dominates, and the
equilibrium at ¢, = 0 is unstable. A numerical computation indicates that this equilibrium
is unstable for a > /3, as shown in the figure below, from [1].
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The third equilibrium, with the dumbell perpendicular to the plane of the orbit of its
center of mass, is discussed in [1] and shown to be unstable.



2.1 Skyhook

A variant of a dumbell satellite is the “skyhook”, a long, rigid rod in a geosynchronous orbit,
with its lower end just above the surface of the Earth.? For this, a ~ 12rg and ry &~ 13rg, so
we infer that the skyhook is unstable (although in principle it could be stabilized by a very
large mass at its upper end, in geosynchronous orbit).

2.2 Pendulum in Orbit

Another related problem is a pendulum in orbit, connected to a much larger mass also in
orbit [10]-[12].
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