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1 Problem

Suppose the rotor of a Faraday disk dynamo (1831, sec 4 of [1]) has radius a, mechanical
moment of inertia Imech about its axis, and initial angular velocity ω0, when immersed in a
uniform, axial magnetic field B. The dynamo is connected to a load of electrical resistance
R via frictionless contacts at its edge and on its axis, as sketched in the figures below.1

Assuming dissipation of energy is negligible by means other than the Joule heating of the
resistor, deduce the time dependence ω(t) of the angular velocity.

In several papers [4]-[7], Kron argued that if one chooses to analyze problems of rotating
electrical machinery in the rotating frame, then one must employ much of the mathematical
apparatus of general relativity, including the Christoffel symbols. Is this really necessary?

2 Solution

The larger issue is that while analysis of mechanical systems in accelerated frames is often
convenient and insightful, this is not the case for electromagnetism for which one must deal
with “fictitious” charge and current densities in accelerated frames of reference (as well as
such mathematical formalism as Christoffel symbols).2 If one desires knowledge of some
particular electromagnetic quantity at some place and time in an accelerated frame, it is
typically preferable to deduce this quantity in the lab frame, and then transform it to the
instantaneous, inertial comoving frame (although the result is not strictly the value in the
accelerated frame).

1Faraday noted in 1831, and again in 1851 [2] that the external magnetic field could be replaced by the
permanent magnetic field of a conducting disk, as sketched on the right above. See also [3].

2No Christoffel symbols are needed to express electromagnetism is a uniformly rotating frame, but the
presence of the “fictitious” charges and currents render this exercise somewhat counterintuitive. See, for
example, [8].
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In the present example the angular velocity is desired in the (inertial, to a good approx-
imation) lab frame, and consideration of the transient rotating frame of the Faraday disk is
not worth while.

The strategy is to relate the electrical current I that flows through the dynamo and the
load resistor R to an electromotive force E that can be said to drive the current. For this, it is
better not to use some version of Faraday’s law (and to avoid the famous question of whether
the “lines” of magnetic field rotate with the rotating magnetic in the second variant of the
dynamo sketched on p. 1). The crisper argument (valid for both variants of the Faraday
dynamo) is to consider a charge carrier e that moves radially with respect to the rotating
disk (as part of the conduction current I) but which is dragged azimuthally with angular
velocity ω by its electromagnetic interaction with the “lattice” of the disk. In this view, the
Lorentz force [9] on the charge e in the magnetic field B (rather than H [10]) is (in Gaussian
units),

F = e
v

c
×B =

eωrB

c
r̂ ≡ eEeff (0 < r < a), (1)

where the effective (radial, lab-frame) electric field inside the rotating disk is,

Eeff =
ωrB

c
r̂, (2)

and c is the speed of light in vacuum. We identify a “motional” electromotive force,

E =

∫ a

0

Eeff · dr =
ωa2B

2c
, (3)

with the effect of the Lorentz force (1), such that the electrical current is given by,

I =
E
R

=
ωa2B

2cR
. (4)

The rate of dissipation of energy U by the load resistor is then,

dU

dt
= −E2

R
= −I2R = −ω2a4B2

4c2R
. (5)

The stored energy U consists of the rotational kinetic energy plus the magnetic field energy,
where the latter is tiny compared to the former. And, we assume that dissipation of energy
by friction, and by electromagnetic radiation, is negligible, such that,

U ≈ Imechω
2

2
,

dU

dt
≈ Imechωω̇ = −ω2a4B2

4c2R
. (6)

and hence,

ω̇

ω
≈ − a4B2

4c2RImech

, ω(t) ≈ ω0 e−a4B2 t/4c2RImech. (7)
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A Appendix: Steady Rotation

The preceding discussion used the convenient fiction of an effective electric field (2) inside
the rotating disk. However, this field is not a true electric field E that obeys Faraday’s law,

∮
E · dl = −1

c

∂B

∂t
. (8)

To clarify the character of the actual electric field E in Faraday’s dynamo we consider the
case of steady rotation, for which we expect,

∮
E · dl = 0 (steady state). (9)

It is important to note that any real dynamo has a small internal resistance R′. Indeed,
if the disk were a perfect conductor, the external magnetic field could not penetrate into the
disk and there would be no Lorentz force on the charge charges, and no dynamo effect.

The current in the system is actually,

I =
E

R + R′ . (10)

An electric field E exists inside the (resistive) wire and the resistor to drive the current
there,3 and line integral of the electric field along the external wires and the resistor R is,

∫
ext

E · dl = IR =
ER

R + R′ . (11)

Inside the disk the current J can be related to the conductivity σ′ of the disk by the
generalization of Ohm’s law,

J = σ′
(
E +

v

c
× B

)
. (12)

We suppose the radial current flows in a tube of small area A such that4

J =
I

A
= σ′

(
Er +

ωrB

c

)
, and R′ =

a

Aσ′ . (13)

The radial electric field inside the tube is,

Er = −ωrB

c
+

I

Aσ′ = −ωrB

c
+

IR′

a
. (14)

3This electric field is shaped by static surface charges along the wire and resistor, which charges flowed
from the disk during the transient spin-up phase.

4This assumption is only approximately correct, as some current flows throughout the disk and the
velocity of the charge carriers is not simply ω × r as due to the rotation of the disk. In this approximation,
J = σ′(E + ωrB r̂/c), and since ∇ · J = 0 in the disk, we have that 4πρ = ∇ · E = −2ωB/c, and there is a
constant, nonzero charge density ρ throughout the disk.
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Note that the electric field (14) is opposite in direction to the effective field (2).5 The line
integral of the electric field along the tube is,∫

tube

E · dl = −ωa2B

2c
+ IR′ = −E + IR′. (15)

When the disk is not connected to the external resistor, and I = 0, this line integral is the
so-called Hall voltage [11].

The line integral around the entire circuit is,∮
E · dl =

∫
tube

E · dl +

∫
ext

E · dl = −E + I(R + R′) = 0, (16)

as expected in a steady-state.

It may also be instructive to consider the energy balance in the dynamo, which delivers
power,

P = EI =
E2

R + R′ , (17)

to Joule heating of the electrical resistance.
It is often said that the magnetic Lorentz force drives the current, but it is also true that

in many situations magnetic fields do no work.6

Not only does the magnetic Lorentz force drive charge radially, but it leads to a torque
that opposes the rotation of the disk. In the approximation that the current flows only
radially in the small tube,

τB =

∫
tube

r ×
(

I r̂

c
× B

)
dr, τB,z = −Ir2B

2c
, (18)

taking the z-axis along the direction of the angular velocity ω. For steady motion, this
torque must be opposed by a mechanical torque τmech that delivers power,

Pmech = τmech ω =
Iω r2B

2c
= EI = P . (19)

We can say that the mechanical agent does work against the azimuthal Lorentz force, and
the radial Lorentz force does work opposite to the that of the azimuthal Lorentz force (such
that the total work done by the Lorentz force is zero). Hence, the radial Lorentz force does
work equal to that by the mechanical agent, and equal to the power P of eq. (17),

PB =
∑

charges

v · ev

c
×B = 0 =

∑
vrFB,r +

∑
vφFB,φ = PB,r + PB,φ, (20)

PB,r = −PB,φ = Pmech = P = EI. (21)

The usual summary of all this is that the (radial) Lorentz force does the work that drives
the current.

5This is similar to the case of a battery where one sometimes speaks of a nonelectrostatic (nonconserva-
tive) field inside the battery that is opposite to the actual electric field there.

6This statement requires careful interpretation, as discussed, for example, in [12].
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[9] H.A. Lorentz, La Théorie Électromagnétique de Maxwell et son Application aux Corps
Mouvants (Brill, Leiden, 1892),
http://kirkmcd.princeton.edu/examples/EM/lorentz_theorie_electromagnetique_92.pdf

[10] F. Rasetti, Deflection of mesons in magnetized iron, Phys. Rev. 66, 1 (1944),
http://kirkmcd.princeton.edu/examples/EM/rasetti_pr_66_1_44.pdf

This paper mentions the earlier history of erratic results on this topic.

[11] E.H. Hall, On the New Action of the Magnet on Electric Currents, Am. J. Math. 2, 287
(1879), http://kirkmcd.princeton.edu/examples/EM/hall_ajm_2_287_79.pdf

[12] K.T. McDonald, Magnetic Forces Can Do Work (Aug. 10, 2011),
http://kirkmcd.princeton.edu/examples/disk.pdf

5


