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1 Problem

The ancient Greeks considered the orbit of the Sun around the fixed Earth to be a circle
(say, of radius r0), but the center of the circle must be offset from the Earth (say, by distance
εr0 where ε ≈ 1/24 is the eccentricity) to fit the facts reasonably well. Assuming the motion
is as described, and that the corresponding force is a central force, deduce the force law (or
equivalently, the potential).

Show that the form of the energy in the present problem is the same as that for the bound
Coulomb problem if coordinates and momenta are exchanged. [Consequently the orbits in
configuration space for one problem have the same form as the orbits in momentum space
for the other.]

2 Solution

2.1 Via Use of Conservation of Energy and Angular Momentum

Conservation of energy E for a central potential V (r) with conserved angular momentum
L = mr2θ̇ can be written as,

E =
1

2
mṙ2 +

1

2
mr2θ̇

2
+ V (r) =

1

2
mṙ2 +

L2

2mr2
+ V (r), (1)

where m is the mass of the orbiting object.
We know the form of the orbit, r(θ), so we can write,

ṙ =
dr

dθ
θ̇ =

L

mr2

dr

dθ
. (2)
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Hence, the potential is related,

V (r) = E − L2

2mr2

[
1 +

1

r2

(dr

dθ

)2]
. (3)

For a circular orbit of radius r0 whose center is offset from the origin by distance εr0

along the +x-axis, we have,

r2
0 = r2 + ε2r2

0 − 2εr0r cos θ, (4)

leading to,

r = r0

(
ε cos θ +

√
1 − ε2 sin2 θ

)
, (5)

and,

dr

dθ
= − εr sin θ√

1 − ε2 sin2 θ
. (6)

Inserting this into the expression (3) for V (r), we find,

V (r) = E − L2

2mr2(1 − ε2 sin2 θ)
. (7)

To complete the solution we note that from eq. (5),

√
1 − ε2 sin2 θ =

r

r0
− ε cos θ, (8)

while from eq. (4),

cos θ =
r2 − r2

0(1 − ε2)

2εr0r
, (9)

so,

√
1 − ε2 sin2 θ =

r2 + r2
0(1 − ε2)

2r0r
. (10)

Finally, the potential is,

V (r) = E − 2L2r2
0

m[r2 + r2
0(1 − ε2)]2

, (11)

so the (central) force is,

F (r) = −dV

dr
= − 8L2r2

0r

m[r2 + r2
0(1 − ε2)]3

. (12)
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2.2 Solution Via the Orbit Equation

This is the “textbook” method to deduce the potential given the orbit.
First, I sketch a derivation of this trick, which is based on the substitution u(θ) = 1/r,

where the form of the orbit is r(θ) for distance r from the force center, and θ is the azimuthal
angle in the plane of the orbit. Then, conservation of energy can be written as,

E =
1

2
mṙ2 +

1

2
mr2θ̇

2
+ V (r) =

1

2
mṙ2 +

L2

2mr2
+ V (r), (13)

where m is the mass of the orbiting object, L = mr2θ̇ is the conserved angular momentum
and E is the total energy. The radial motion can be discussed in terms of an effective
potential,

Veff =
L2

2mr2
+ V (r). (14)

Then,

ṙ = − u̇

u2
= − 1

u2

du

dθ
θ̇ = − L

m

du

dθ
. (15)

Also,

r̈ = −L

m

d2u

dt dθ
= −L

m

du

dθ2 θ̇ = −Lu2

m

d2u

dθ2 . (16)

The radial equation of motion is,

mr̈ = −dVeff

dr
= F (r) +

L2

mr3
. (17)

Combining, we find the orbit equation,

d2u

dθ2 + u = − m

L2u2
F

(
1

u

)
. (18)

We now begin Solution 2. Again, we use the cosine law to deduce the form r(θ) as in
eq. (5), so,

u =
1

r
=

1

r0

(
ε cos θ +

√
1 − ε2 sin2 θ

) . (19)

Then,

du

dθ
=

εu sin θ√
1 − ε2 sin2 θ

,
d2u

dθ2 =
εu

(
cos θ + ε sin2 θ

√
1 − ε2 sin2 θ

)

(1 − ε2 sin2 θ)3/2
, (20)
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and ,

d2u

dθ2 + u =
1

r0(1 − ε2 sin2 θ)3/2
. (21)

Again, we note that,

√
1 − ε2 sin2 θ =

r

r0
− ε cos θ =

r2 + r2
0(1 − ε2)

2r0r
. (22)

Then,

F (r) = − L2

mr2

(d2u

dθ2 + u
)

= − 8L2r2
0r

m[r2 + r2
0(1 − ε2)]3

, (23)

as in eq. (12).

2.3 Vectorial Solution

(Akin to the Lenz-vector approach.)
We consider the radius vector r, the constant vector εr0 from the force center (the Earth)

to the center of the orbit, and the vector r0 of constant length that points from the center
of the orbit to the Sun. Then, r = r0 + εr0.

The momentum p lies in the plane of the orbit and is perpendicular to vector r0. The
(constant) angular momentum vector L (about the Earth) is perpendicular to both r0 and
p.

As for the Lenz-vector approach, it is interesting to consider the vector,

c = p× L, c = pL. (24)

This vector is in the same direction as r0, so we write,

c = Kr0, c = Kr0. (25)

Then, we can express the scalar product r · c two ways. First,

r · c = r · p× L = r × p · L = L2. (26)

But also,

r · c = Kr · r0 = Kr · (r − εr0) = K(r2 − εr0r cos θ) = K
r2 + r2

0(1 − ε2)

2
, (27)

using the cosine law (4). Hence,

K =
2L2

r2 + r2
0(1 − ε2)

. (28)
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Furthermore, we note that from eqs. (24)-(25), the magnitude of the momentum can be
written as,

p =
Kr0

L
=

2Lr0

r2 + r2
0(1 − ε2)

. (29)

We insert this into the energy equation,

E =
p2

2m
+ V (r), (30)

to find,

V (r) = E − 2L2r2
0

m[r2 + r2
0(1 − ε2)]2

, (31)

as in eq. (11).

2.4 Relation to the Coulomb Potential

Conservation of energy for the present problem can be written as,

E =
p2

2m
+ V (r) =

p2

2m
+ E − 2L2r2

0

m[r2 + r2
0(1 − ε2)]2

, (32)

and hence,

p2

2m
− 2L2r2

0

m[r2 + r2
0(1 − ε2)]2

= 0. (33)

Compare this to a negative-energy Coulomb problem, for which the energy is,

E =
p2

2m
− α

r
≡ − p2

0

2m
. (34)

This can be rearranged to yield,

r2

2m
− 2α2m2

(p2 + p2
0)

2
= 0. (35)

Thus, the present problem and the Coulomb problem are related by the exchange trans-
formation qi ↔ Pi, pi ↔ Qi, between coordinates and their conjugate momenta (qi, pi) of
one system and the (Qi, Pi) of the other. More formally, the two problems are related by
the canonical transformation generated by the function,

F =
∑

i

qiQi. (36)

As a consequence, the orbits in configuration space of one problem have the same form
as the orbits in momentum space for the other, etc.
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