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1 Problem

Discuss the most prominent effect on the vertical oscillations of a copper cube of edge a that
is suspended from a spring of constant k when the cube is immersed in a uniform, horizontal
magnetic field B0 which is normal to two of the cube’s vertical faces. The cube is electrically
neutral in the absence of the magnetic field.

2 Solution

This problem was posed on p. 250 of the April 2012 issue of The Physics Teacher.1,2

When a conductor moves through a nonuniform, external magnetic field, the magnetic
flux varies through loops fixed inside the conductor, so an electromotive force is induced
around the loops, according to Faraday’s law (in the rest frame of the conductor), and eddy

1Magnetic damping is due to eddy currents, a phenomenon first observed (but not understood) by Arago
[1, 2, 5], who reported in 1824: the results of some experiments that he has conducted on the influence
that metals and many other substances exert on a magnetic needle, which has the effect of rapidly reducing
the amplitude of the oscillations without altering significantly their duration. As reported by Babbage and
Herschel (1825) [3]: The curious experiments of M. Arago described by M. Gay Lussac during his visit to
London in the spring of the present year (1825), in which plates of copper and other substances set in rapid
rotation beneath a magnetized needle, caused it to deviate from its direction, and finally dragged it round
with them, naturally excited much attention.

A step towards an understanding of Arago’s phenomenon was made by Christie (1826) [4], who noted that
if the copper disk is cut into two or more concentric rings, the effect of a magnet on its rotation is greatly
reduced.

In 1831, Art. 131 of [6], Faraday stated: Future investigations will no doubt ... decide the point whether
the retarding or dragging action spoken of (by Arago) is always simultaneous with electric currents, i.e.,
eddy currents. This statement might have been clearer if Art. 131 had been followed by Art. 123, where
it was stated: These currents are discharged or return in the parts of the plate on each side of and more
distant from the place of the pole, where, of course, the magnetic induction is weaker.

One can reasonably infer that Faraday had a vision of eddy currents as shown above, although Faraday
himself never made such a sketch.

The notion of eddy currents is sometimes attributed to Foucault (1855) [7], and are sometimes called
Foucault currents, although Foucault attributed their explanation to Faraday.

2The pedagogic literature on magnetic damping/braking includes [9]-[81].
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currents flow.3 The Lorentz force on these eddy currents, due to the external magnetic
field, opposes the motion, and one speaks of magnetic braking/damping.4 This effect is (ul-
tra)relativistic, being of order v2/c2, where v is the speed of the conductor and c is the speed
of light in vacuum. While such relativistic effects are generally small for “ordinary” veloci-
ties, the eddy current density obeys J = σE, where the conductivity σ for good conductors
approaches c2/v2 when measured in Gaussian units, such that eddy-current braking is a rare
example of an important (ultra)relativistic correction at low velocities.

In the present problem the magnetic field is spatially uniform, so the magnetic flux
through a moving loop does not change, and no eddy currents develop. Yet, there exists a
very weak magnetic-damping effect, as discussed below.

The cube has mass m = ρa3, where ρ is the mass density of copper, so in the absence of
the magnetic field it oscillates vertically with angular frequency,

ω =

√
k

m
. (1)

When the oscillations have amplitude A the vertical velocity has the form,

v(t) = Aω eiωt, (2)

which is surely small in magnitude compared to the speed of light c in vacuum.
In the instantaneous rest frame of the cube there appears to be a horizontal electric field

of (time-dependent) magnitude,

E0(t) ≈ v(t)B0

c
=

AB0 ω eiωt

c
(3)

(to order v/c, and in Gaussian units),5 whose direction is perpendicular to that of B0, and
hence normal to two faces of the cube. Assuming that the frequency ω is low enough that
the magnetic field penetrates into the copper cube, the electric field (3) exists throughout
its interior, and adds to the electric field E1 ≈ 4πQ/a2 associated with surface charge Q (to
be determined). The total electric field E = E0 + E1 gives rise to electrical current density
of magnitude J = σE where σ ≈ 6 × 1017 s is the electrical conductivity of copper.6 As a
consequence, an electrical current,

I(t) = a2J = a2σE, (4)

3Eddy currents can be induced in conductors at rest by time-dependent magnetic fields. The Lorentz
force on the eddy currents can then lead to (dramatic) motion of the conductor, as in Elihu Thomson’s
jumping ring (1884) [86]-[129]. Here, the magnetic force does the work on the ring.

A small such effect was observed by Ampère and de la Rive in 1821-22 [82, 83], but was largely ignored. A
brief mention of this was made by Verdet (1872), sec. 209, p. 357 of [84]. This neglected lore was recounted
by Thompson (1894) in [90].

4For another example of this phenomenon by the author, see [46].
5A lab-frame argument is that the Lorentz force on the conduction electrons can be thought of as due

to an effective electric field, given by eq. (3).
6At high frequencies the conductivity σ has a significant imaginary part, which we neglect in the present

low-frequency example.
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flows through the copper cube, along the direction of the electric field. This current leads to
an accumulation of charge on the faces of the cube normal to the electric field,

Q(t) =

∫
I dt = − ia2σE

ω
, (5)

and this surface-charge distribution leads to electric field,

E1(t) ≈ 4πQ(t)

a2
= −4πiσE

ω
, (6)

The total electric field inside the cube is,

E = E0 + E1 ≈ E0 − 4πiσE

ω
, (7)

i.e.,

E ≈ E0

1 + 4πiσ/ω
≈ − iωE0

4πσ
= − iω2AB0 eiωt

4πσc
. (8)

The electric current is,

I(t) = a2σE ≈ − ia2ω2AB0 eiωt

4πc
, (9)

independent of the conductivity σ.7

The copper cube presents electrical resistance,

R =
1

aσ
(11)

to the current flow, and heat is generated at the time-average rate,

〈P 〉 =
|I |2 R

2
=

a3ω4A2B2
0

32π2c2σ
≡ CA2 , (12)

where,

C =
a3ω4B2

0

2c2σ
=

k2B2
0

32πc2ρ2σ
. (13)

This is an effect at order v2/c2, and will be extremely small due to the additional presence
of the large conductivity σ in the denominator.8

7The result (9) could be gotten more quickly by arguing that the electric field in the interior of a good
conductor is essentially zero, so that there must be charge ±Q ≈ ±a2E0/4π on the faces of the cubes normal
to E0 to “short out” this field. Then, the current in the interior of the cube is,

I(t) =
dQ

dt
≈ a2

4π

dE0

dt
=

ia2ω2AB0 eiωt

4πc
. (10)

However, this argument fails when eddy currents are present, so care is required in using it.
8When eddy currents are generated the surface charge is negligible, and a factor of σ appears in the

numerator rather than the denominator of the expression for 〈P 〉.
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The energy deposition (12) results in a gradual decrease of the amplitude A of oscillation,
as the energy U of the oscillation system is,9

U(t) = kA2(t). (14)

Then, the energy-loss equation dU/dt = −〈P 〉 leads to,

dA2

dt
= −CA2

k
, (15)

whose solution is,

A = A0e
−t/τ , (16)

with (large!) damping time constant,

τ = 2k/C =
64π2c2ρ2σ

kB2
0

. (17)

For parameters typical of laboratory experiments, the time constant τ is larger than the age
of the Universe.

2.1 Other Effects at Order v2/c2

Even for B = 0 the “relativistic mass” increase with velocity implies that the angular fre-
quency of oscillation is smaller than

√
k/m by a term of order v2/c2.

For nonzero magnetic field the angular frequency is also slightly reduced by the vertical
Lorentz force on the horizontal current discussed above.

Whether the tiny frequency shift or the very weak magnetic damping is the more promi-
nent effect is a matter of opinion.
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circuit voltäıque, Ann. Chem. Phys. 21, 24 (1822), p. 47,
http://kirkmcd.princeton.edu/examples/EM/delarive_acp_21_24_22.pdf
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