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1 Problem

Deduce the emissive power of radiation of frequency ν into vacuum at angle θ to the normal
to the surface of a good conductor at temperature T , for polarization both parallel and
perpendicular to the plane of emission.

2 Solution

The solution is adapted from ref. [1] (see also [2]), and finds application in the calibration of
the polarization dependence of detectors for cosmic microwave background radiation [3, 4].

Recall Kirchhoff’s law of heat radiation (as clarified by Planck [5]) that,

Pν

Aν

= K(ν, T ) =
hν3/c2

ehν/kT − 1
, (1)

where Pν is the emissive power per unit area per unit frequency interval (emissivity) and,

Aν = 1 −R = 1 −
∣∣∣∣E0r

E0i

∣∣∣∣
2

, (2)

is the absorption coefficient (0 ≤ Aν ≤ 1), c is the speed of light, h is Plank’s constant and
k is Boltzmann’s constant. Also recall the Fresnel equations of reflection that,

E0r

E0i

∣∣∣∣
⊥

=
sin(θt − θi)

sin(θt + θi)
,

E0r

E0i

∣∣∣∣
‖

=
tan(θt − θi)

tan(θt + θi)
, (3)

where i, r, and t label the incident, reflected, and transmitted waves, respectively.
The solution is based on the fact that eq. (1) holds separately for each polarization of

the emitted radiation, and is also independent of the angle of the radiation. This result is
implicit in Planck’s derivation [5] of Kirchhoff’s law of radiation, and is stated explicitly in
[6]. That law describes the thermodynamic equilibrium of radiation emitted and absorbed
throughout a volume. The emissivity Pv and the absorption coefficient Aν can depend on
the polarization of the radiation and on the angle of the radiation, but the definitions of
polarization parallel and perpendicular to a plane of emission, and of angle relative to the
normal to a surface element, are local, while the energy conservation relation Pν = AνK(ν, T )
is global. A “ray” of radiation whose polarization can be described as parallel to the plane of
emission is, in general, a mixture of parallel and perpendicular polarization from the point
of view of the absorption process. Similarly, the angles of emission and absorption of a ray
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are different in general. Thus, the concepts of parallel and perpendicular polarization and
of the angle of the radiation are not well defined after integrating over the entire volume.
Thermodynamic equilibrium can exist only if a single spectral intensity function K(ν, T )
holds independent of polarization and of angle.

All that remains is to evaluate the reflection coefficients R⊥ and R‖ for the two polar-
izations at a vacuum-metal interface. These are well known [1, 2, 7], but we derive them for
completeness.

To use the Fresnel equations (3), we need expressions for sin θt and cos θt. The boundary
condition that the phase of the wave be continuous across the vacuum-metal interface leads,
as is well known, to the general form of Snell’s law,

ki sin θi = kt sin θt, (4)

where k = 2π/λ is the wave number. Then,

cos θt =

√
1 − k2

i

k2
t

sin2 θi. (5)

To determine the relation between wave numbers ki and kt in vacuum and in the con-
ductor, we consider a plane wave of angular frequency ω = 2πν and complex wave vector
k,

E = E0e
i(kt·r−ωt), (6)

which propagates in a conducting medium with dielectric constant ε, permeability μ, and
conductivity σ. The wave equation for the electric field in such a medium is (in Gaussian
units),

∇2E − εμ

c2

∂2E

∂t2
=

4πμσ

c2

∂E

∂t
, (7)

where c is the speed of light. We find the dispersion relation for the wave vector kt on
inserting eq. (6) in eq. (7),

k2
t = εμ

ω2

c2
+ i

4πσμω

c2
. (8)

For a good conductor, the second term of eq. (8) is much larger than the first, so we write,

kt ≈
√

2πσμω

c
(1 + i) =

1 + i

d
=

2

d(1 − i)
, (9)

where,

d =
c√

2πσμω
� λ, (10)

is the frequency-dependent skin depth. Of course, on setting ε = 1 = μ and σ = 0 we obtain
expressions that hold in vacuum, where ki = ω/c.

We see that for a good conductor |kt| � ki, so according to eq. (5) we may take cos θt ≈ 1
to first order of accuracy in the small ratio d/λ. Then the first of the Fresnel equations
becomes,

E0r

E0i

∣∣∣∣
⊥

=
cos θi sin θt/ sin θi − 1

cos θi sin θt/ sin θi + 1
=

(ki/kt) cos θi − 1

(ki/kt) cos θi + 1
≈ (πd/λ)(1 − i) cos θi − 1

(πd/λ)(1 − i) cos θi + 1
, (11)
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and the reflection coefficient is approximated by,

R⊥ =

∣∣∣∣E0r

E0i

∣∣∣∣
2

⊥
≈ 1 − 4πd

λ
cos θi = 1 − 2 cos θi

√
ν

σ
. (12)

For the other polarization, we see that,

E0r

E0i

∣∣∣∣
‖

=
E0r

E0i

∣∣∣∣
⊥

cos(θi + θt)

cos(θi − θt)
≈ E0r

E0i

∣∣∣∣
⊥

cos θi − (πd/λ)(1 − i) sin2 θi

cos θi + (πd/λ)(1 − i) sin2 θi

, (13)

so that,

R‖ ≈ R⊥

(
1 − 4πd

λ

sin2 θi

cos θi

)
≈ 1 − 4πd

λ cos θi
= 1 − 2

cos θi

√
ν

σ
. (14)

An expression for R‖ valid to second order in d/λ has been given in [7]. For θi near 90◦,
R⊥ ≈ 1, but eq. (14) for R‖ is not accurate. Writing θi = π/2 − ϑi with ϑi � 1, eq. (13)
becomes,

E0r

E0i

∣∣∣∣
‖
≈ ϑi − (πd/λ)(1 − i)

ϑi + (πd/λ)(1 − i)
. (15)

For θi = π/2, R‖ = 1, and R‖,min = (5 −√
2)/(5 +

√
2) = 0.58 for ϑi = 2

√
2πd/λ.

Finally, combining eqs. (1), (2), (12) and (14) we have,

Pν⊥ ≈ 4πd cos θ

λ3

hν

ehν/kT − 1
, Pν‖ ≈ 4πd

λ3 cos θ

hν

ehν/kT − 1
, (16)

and,
Pν⊥
Pν‖

= cos2 θ (17)

for the emissivities at angle θ such that cos θ � d/λ.
The conductivity σ that appears in eq. (16) can be taken as the DC conductivity so long

as the wavelength exceeds 10 μm [1]. If in addition hν � kT , then eq. (16) can be written,

Pν⊥ ≈ 4πd kT cos θ

λ3 , Pν‖ ≈ 4πd kT

λ3 cos θ
, (18)

in terms of the skin depth d.
We would like to thank Matt Hedman, Chris Herzog and Suzanne Staggs for conversations

about this problem.
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