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1 Problem

Consider a set of charge and current sources located at, say, z < 0 whose electromagnetic
fields are modified by a conducting screen, with apertures, on the plane z = 0, and there
are no other charges or currents anywhere. The total electromagnetic fields E and B can be
decomposed at the sum of “incident” and “scattered” fields,

E = Ei + Es, B = Bi + Bs, (1)

where the incident fields are those associated with the sources at z < 0 in the absence of the
screen, and the scattered field are those due only to the charges and currents on the screen.

In, for example, sec. 11.2 of [1] it is claimed that the scattered fields obey the symmetries,

Es
x(x, y,−z) = Es

x(x, y, z), Bs
x(x, y,−z) = −Bs

x(x, y, z), (2)

Es
y(x, y,−z) = Es

y(x, y, z), Bs
y(x, y,−z) = −Bs

y(x, y, z), (3)

Es
z(x, y,−z) = −Es

z(x, y, z), Bs
z(x, y,−z) = Bs

z(x, y, z). (4)

Explain why these (and other) symmetries hold.
A significant application of the symmetries (2)-(4) is in the justification of the electro-

magnetic version of Babinet’s principle of complementary screens. See, for example, [2].

2 Solution

2.1 The Symmetries Hold Because No Currents Cross the Edge

An argument as to why the symmetries (2)-(4) hold in general can be based on the discussion
in sec. 10.7 of [3] (which did not appear in earlier editions of that work). Namely, the scattered
fields can be deduced from scalar potential V s and vector potential As due to the charges
and currents on the screen, which potentials are even functions of z. Then, (in Gaussian
units, with c being the speed of light in vacuum),

Es = −∇V s − 1

c

∂As

∂t
, Bs = ∇ × As, (5)

and,

Es
z = −∂V s

∂z
− 1

c

∂As
z

∂t
, Bs

x =
∂As

z

∂y
− ∂As

y

∂z
, and Bs

y =
∂As

x

∂z
− ∂As

z

∂x
, (6)
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have no symmetry in z if As
z is nonzero, while Es

x, Es
y and Bs

z do obey the symmetries (2)-(3).
In principle, currents could flow from one side of the screen to the other, such that the

current density J s
z is nonzero on the edge(s) of the screen, leading to nonzero As

z. However,
as first noted by Meixner [4], such current density would give rise to a magnetic field whose
stored energy diverges logarithmically within finite volumes surrounding portions of the
edge.1,2 The physical requirement that the scattered field energy (which derives from the
incident wave) be finite inside finite volumes implies that J s

z , and also As
z, must be zero.

Hence, the symmetries (2)-(4) do hold in general.
These forms seem to have first appeared in [5] (based on lemma 2, p. 508), but they were

not well justified in that work. An argument similar to the above for these forms is given in
sec. 9.2 of [6]. A review of edge conditions for plane conducting screens is given in [7].

Experiments in which polarization effects in scattering of light from a knife edge were
first performed by Gouy in 1883 [8]. A partial explanation was given by Poincaré in 1892
[9], which is perhaps the first calculation of diffraction of electromagnetic waves. This first
“complete” solution for an electromagnetic diffraction problem was by Sommerfeld in 1895
[10, 11, 12, 13], who found scattered fields that obey the symmetries (2)-(4), although this
is perhaps not obvious. Other early examples of the scattering of electromagnetic waves by
plane conducting screens were considered by Rayleigh [14, 15], for “small” apertures and
waves with normal incidence, and by Lamb [16] gave an “exact” analysis of waves normally
incident on a screen with period slots of any size, who found fields that obey the symmetries
(2)-(4), as reviewed in the Appendix below.

2.2 Incident, Reflected and Transmitted Fields

A different decomposition of the fields than eq. (1) can be made in terms of incident, reflected
and transmitted fields,

E(z < 0) = Ei + Er, E(z > 0) = Et, B(z < 0) = Bi + Br, B(z > 0) = Bt. (7)

Lamb [16] made the further decomposition,

Er = Er0 + Er1, Br = Br0 + Br1, (8)

where Er0 and Br0 are the reflected fields (for z < 0) if the entire plane z = 0 were a perfect
conductor.3

1For example, if the conducting half plane (x < 0, y, 0) had an edge current I ẑ per unit length, then the
magnetic field would be By = −2Ix/c(x2+z2), and the field energy in a box with one corner at the origin and
diagonal to (x � a, a, a) would be ∝ ∫

B2
y dVol ∝ (aI2/c2)

∫ x

0
x2 dx

∫ a

0
dz/(x2+z2)2 = K+(πaI2/c2)

∫ x

0
dx/x,

which diverges logarithmically. If the edge current existed only over the line segment (0,−b < y < b, 0), then
the above calculation would still be valid for a box with a � b.

2The surface charge density near the edge varies inversely with the square root of the distance from the
edge, such that the electric field energy remains finite in finite volumes surrounding the edge.

3The corresponding decomposition of the transmitted field,

Et = Et0 + Et1 , Bt = Bt0 + Bt1 , (9)

is trivial in that Et0 = 0 = Bt0 .
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The reflected fields in case the entire plane z = 0 is a perfect conductor can be calculated
from the image charge and current densities at z > 0,

ρimage(x, y, z) = −ρ(x, y,−z), (10)

J image
x (x, y, z) = −Jx(x, y,−z),

J image
y (x, y, z) = −Jy(x, y,−z), (11)

J image
z (x, y, z) = Jz(x, y,−z).

A general prescription for computing electromagnetic fields is given by so-called vector
diffraction theory. One formulation of this has been given by Stratton and Chu [17, 18],4

assuming all source charge and current densities ρ and J and fields E and B have time
dependence e−iωt,

E(x) =

∫
V

(
ik

c
J(x′)

eikr

r
+ ρ(x′)∇′ e

ikr

r

)
dVol′ (12)

− 1

4π

∮
S

{
ik[n̂′ × B(x′)]

eikr

r
+ [n̂′ ×E(x′)] × ∇′e

ikr

r
+ [n̂′ · E(x′)]∇′e

ikr

r

}
dArea′,

B(x) =
1

c

∫
V

J(x′) ×∇′ e
ikr

r
dVol′ (13)

+
1

4π

∮
S

{
ik[n̂′ × E(x′)]

eikr

r
− [n̂′ ×B(x′)] × ∇′e

ikr

r
− [n̂′ · B(x′)]∇′ e

ikr

r

}
dArea′,

where Gaussian units are employed, n̂′ is the outward unit vector normal to surface S (that
bounds volume V ), and r = |x − x′|.

We first suppose the screen is absent, and volume V to be all of space. The surface S
is at “infinity”, and we assume that in physically realistic examples the surface integrals at
“infinity” vanish. Then, the “incident” fields can be computed by,

Ei(x) =

∫
z′<0

(
ik

c
J(x′)

eikr

r
+ ρ(x′)∇′e

ikr

r

)
dVol′ (no screen), (14)

Bi(x) =
1

c

∫
z′<0

J(x′) × ∇′ e
ikr

r
dVol′ (no screen), (15)

assuming that the sources are in the region z < 0. Similarly, the reflected fields when all of
z = 0 is a perfect conductor are given by,

Er0(x) =

∫
z′>0

(
ik

c
Jimage(x′)

eikr

r
+ ρimage(x′)∇′ e

ikr

r

)
dVol′, (16)

Br0(x) =
1

c

∫
z′>0

Jimage(x′) × ∇′ e
ikr

r
dVol′. (17)

Then, recalling eq. (11), the incident and reflected fields (in case the plane z = 0 is a perfect
conductor) obey the relations (where z is positive),

Er0
x (x, y,−z) = −Ei

x(x, y, z), Br0
x (x, y,−z) = Bi

x(x, y, z), (18)

4See also the Appendix of [19].
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Er0
y (x, y,−z) = −Ei

y(x, y, z), Br0
y (x, y,−z) = Bi

y(x, y, z), (19)

Er0
z (x, y,−z) = Ei

z(x, y, z), Br0
z (x, y,−z) = −Bi

z(x, y, z). (20)

In general, the reflected fields are the same as the scattered fields for z < 0, so we can
write,

Er1 = Er − Er0 = Es(z < 0) −Er0, (21)

Br1 = Br − Br0 = Bs(z < 0) − Br0. (22)

The transmitted fields (for z > 0) follow from eqs. (5) as,

Et = Ei + Es(z > 0), (23)

Bt = Bi + Bs(z > 0). (24)

Recalling the symmetries (2)-(4) and (18)-(20), eqs. (21)-(24) lead to the additional
symmetries,

Er1
x (x, y,−z) = Et

x(x, y, z), Br1
x (x, y,−z) = −Bt

x(x, y, z), (25)

Er1
y (x, y,−z) = Et

y(x, y, z), Br1
y (x, y,−z) = −Bt

y(x, y, z), (26)

Er1
z (x, y,−z) = −Et

z(x, y, z), Br1
z (x, y,−z) = Bt

z(x, y, z), (27)

where z > 0.
The symmetries (25)-(27) have been claimed to be evident in [12, 20, 21].5

Appendix: Lamb’s Example

An early “exact” analysis of electromagnetic fields associated with a plane conducting screen
appeared in the 1898 paper by Lamb [16] (secs. 5 and 6),6 but seems to be little known.
Here, we transcribe the discussion of Lamb’s example given in sec. 2.2 of [24] into the
present notation, to show that the fields in this example satisfy both the symmetries (2)-(4)
and (25)-(27).7

The plane z = 0 is a perfect conductor except for slots with period d running along the
x direction. One of the slots is centered on the line (x, 0, 0). The remaining strips of perfect
conductor have width 2a, and we define 1/μ = sin(πa/d). Lamb made a deft use of conjugate
functions to identify a useful function,

u(y, z) =
π |z|
d

− ln
1

μ
+

∞∑
n=1

Cn e−2nπ|z|/d cos
2nπy

d
. (28)

5Although [21] is largely a transcription of Schwinger’s famous wartime paper [22], this claim does not
appear in the latter.

6Lamb built on earlier efforts of Thomson [23] and Rayleigh [14, 15].
7Lamb never mentioned charges or currents in his discussion, but his analysis is of a mathematical

“monolayer” with the tacit assumption that no currents flow in the z-direction. Hence, we expect the
symmetries (2)-(4) and (25)-(27) to hold, following footnotes 3 and 7.
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Then, a plane wave normally incident on this screen from z < 0 with electric field polarized
in the x-direction (parallel to the strips) results in total electric field given by,

Ex(z < 0) = E0 ei(kz−ωt) + E1 e−i(kz+ωt) + E2

(
u +

πz

d
+ ln

1

μ

)

= Ei
x + Es

x(z < 0) = Ei
x + Er

x = Ei
x + Er0

x + Er1
x , (29)

Ex(z > 0) = (E0 + E1) ei(kz−ωt) + E2

(
u− πz

d
+ ln

1

μ

)

= Ei
x + Es

x(z > 0) = Et
x, (30)

where,

E1

E0

= − 1

1 + iCkd
, E2 =

ikdE1

π
, with C =

1

π
ln

1

μ
=

1

π
ln sin

πa

d
. (31)

The reflected wave in case the plane z = 0 were a perfect conductor is Er0
x = −E0 e−i(kz+ωt),

so that,

Er1
x (z < 0) = (E0 + E1) ei(kz−ωt) + E2

(
u +

πz

d
+ ln

1

μ

)
, (32)

and eqs. (30)-(32) obey symmetry (2), Er1
x (x, y,−z) = Et

x(x, y, z), as well as the symmetry
(25), Es

x(x, y,−z) = Es
x(x, y, z).

Likewise, a plane wave normally incident on this screen from z < 0 with magnetic field
polarized in the x-direction (such that the incident electric field is perpendicular to the strips)
results in total magnetic field given by,

Bx(z < 0) = E0 ei(kz−ωt) + E1 e−i(kz+ωt) + E2

(
u +

πz

d
+ ln

1

μ

)

= Bi
x + Bs

x(z < 0) = Bi
x + Br

x = Ei
x + Er0

x + Er1
x , (33)

Bx(z > 0) = (E0 −E1) ei(kz−ωt) − E2

(
u − πz

d
+ ln

1

μ

)

= Bi
x + Bs

x(z > 0) = Bt
x, (34)

where in this case the slots are located where the conducting strips were previously. Here,
the slots have width 2a, the function u is still given by eq. (28) but with 1/μ = cos(πa/d),

E1

E0
=

iDkd

1 + iDkd
, E2 = − E1

ln 1
μ

, with D =
1

π
ln

1

μ
=

1

π
ln cos

πa

d
. (35)

The reflected wave in case the plane z = 0 were a perfect conductor is Br0
x = E0 e−i(kz+ωt),

so that,

Br1
x (z < 0) = (E0 − E1) ei(kz−ωt) + E2

(
u +

πz

d
+ ln

1

μ

)
, (36)

and eqs. (34)-(36) obey symmetry (2), Br1
x (x, y,−z) = −Bt

x(x, y, z), as well as the symmetry
(25), Bs

x(x, y,−z) = −Bs
x(x, y, z).
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