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1 Problem

Disregarding degeneracies and considering only different atomic levels, is it possible that
two different transitions in hydrogen atom give the same frequency of radiation? That
is, can different energy-level transitions in a hydrogen atom have photons of the same en-
ergy/frequency?1

Figure 1: Energy-level transitions in a hydrogen atom. An electron jumps from an outer
ring n1 to an inner ring n2 < n1, with emission of a photon of energy ΔE ∝ n−2

2 − n−2
1 .

2 Solution

The answer is definitely yes, and infinitely many transitions have been found [2], but to our
knowledge a generalization is still lacking. In this note we will show a general solution, i.e.,
how all equifrequency-transition pairs can be obtained. This puzzle is a simple yet concrete
example of how number theory can help understanding quantum systems, a curious theme

1This question was asked during a PhD oral exam in 1997 at University of Colorado Boulder [1].
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that emerges in theoretical physics [3], but which is usually inaccessible to high school and
college students.

In quantum mechanics, the energy of the nth level of a hydrogen atom is given by E(n) =
−E0/n

2, where n ∈ Z+ is a positive integer and E0 = 13.6 eV is the Rydberg energy (see, for
example, [4]). For simplicity we will not consider any relativistic effects and other corrections
(such as the effect of the proton magnetic moment) to the energy levels. The challenge is to
find all transition pairs (n1 → n2 < n1, n3 → n4 < n3) with equal radiation energies, which
means,

1

n2
2

− 1

n2
1

=
1

n2
4

− 1

n2
3

> 0. (1)

Here we will find a general solution of this equation, including trivial solutions where n1 = n3

and n2 = n4.
Consider the Diophantine equation [5] with a parameter s ∈ Z+ and unknowns x, y, z ∈

Z+,
x2 − y2 = sz2. (2)

With any two solutions (x1, y1, z1) and (x2, y2, z2) to this equation, any positive integer pair
(t1, t2) satisfies,

x1y1t1z2 = x2y2t2z1, (3)

will give a solution to eq. (1),

(n1, n2, n3, n4) = (x1t1, y1t1, x2t2, y2t2), (4)

which can be checked by direct substitution. To generate all solutions (t1, t2) to eq. (3), we
use any k ∈ Z+ and G = gcd(x1y1z2, x2y2z1),

t1 =
kx2y2z1

G
, t2 =

kx1y1z2

G
, (5)

where the operation gcd(α, β) determines the greatest common divisor of α, β ∈ Z+.
We can prove that the above procedure comprises all solutions of eq. (1). Start from this

equation, denote t′1 = gcd(n1, n2) and t′2 = gcd(n3, n4). Write n1 = x′
1t

′
1, n2 = y′

1t
′
1, n3 =

x′
2t

′
2, n4 = y′

2t
′
2. Note that n1 > n2 and n3 > n4 i.e., x′

1 > y′
1 and x′

2 > y′
2. Then, we rewrite

eq. (1) as,

x′2
1 − y′2

1

x′2
2 − y′2

2

=

(
x′

1y
′
1t

′
1

x′
2y

′
2t

′
2

)2

, (6)

and put the fraction x′
1y

′
1t

′
1/x

′
2y

′
2t

′
2 into irreducible form z′

1/z
′
2 where gcd(z′

1, z
′
2) = 1 and both

z′
1 and z′

2 are nonzero,
x′

1y
′
1t

′
1

x′
2y

′
2t

′
2

=
z′
1

z′
2

. (7)

Thus,
x′2

1 − y′2
1

x′2
2 − y′2

2

=
z′2
1

z′2
2

, (8)

and hence there exists s′ ∈ Z+ such that,

x′2
1 − y′2

1 = s′z′2
1 , x′2

2 − y′2
2 = s′z′2

2 . (9)
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Notice here that condition (7) is exactly eq. (3), and condition (9) provides us two solutions
of eq. (2). Combined with the above paragraph, we see these two conditions, (7) and (9),
are both necessary and sufficient. This completes the proof.

To generate the set of all nonzero integer solutions (x, y, z) to eq. (2), we will need the
set of all non-zero rational solutions (a, b) to its dehomogenized version (by dividing both
sides of eq. (2) by 1/y2),

a2 − 1 = sb2. (10)

(which looks much like the Pell equation [6], but can be solved by simpler methods). By
taking any (a, b) = (a1/a2, b1/b2) that satisfies eq. (10) and any l ∈ Z, we obtain all triples,

(x, y, z) =

(
la1b2

G2

,
la2b2

G2

,
la2b1

G2

)
, (11)

of eq. (2) where G2 = gcd(a2, b2).

Figure 2: Geometric representation of curve eq. (10) and line b = q(a − 1) in the a-b plane.
The intersection in the first quadrant gives a solution to eq. (10).

A geometric way [5] to deal with eq. (10) is to draw in the a-b plane a line passing through
(1, 0) with a rational slope q ∈ Q, say the line b = q(a − 1), as in Fig. 2. For q2 �= 1/s, this
line will cut the curve (10) at another point,

(a, b) =

(
sq2 + 1

sq2 − 1
,

2q

sq2 − 1

)
, (12)

and more importantly, all solutions of eq. (10) can be attained this way by varying q. Note
that q = 0 gives z = 0 /∈ Z+, and changing the sign of q changes the sign of (a, b). Hence, if
we let q = q1/q2 where q1 ∈ Z\{0}, q2 ∈ Z+ then a = a1/a2, b = b1/b2 where,

a1 = sq2
1 + q2

2, a2 = sq2
1 − q2

2, (13)

b1 = 2q1q2, b2 = sq2
1 − q2

2. (14)

The positive triple (x, y, z) can be obtained now from eq. (11) with the correct sign choice.
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In summary, we can generate a solution (x, y, z) to eq. (2) with parameter s ∈ Z+ from
any number q = q1/q2 �= 0. Given the pair, we go through eqs. (13)-(14), pick a value l ∈ Z

and use equation (11) to arrive at (x, y, z). Then, with two such solutions, say (x1, y1, z1)
and (x2, y2, z2), we pick a value k ∈ Z+ and use eq. (5) to get (t1, t2) before plugging in
eq. (4) to get a pair (n1 → n2, n3 → n4). See Fig. 3 for a demonstration.

Figure 3: A demonstration of the procedure to get an equifrequency transition pair. Here
we start by selecting s = 6, then from (q1, q2) = (5, 7) and l = 5 we get (x1, y1, z1) =
(995, 505, 350), from (q1, q2) = (1, 1) and l = 7 we get (x2, y2, z2) = (49, 35, 14). Then, with
k = 4 we arrive at (n1 → n2, n3 → n4) = (6825700 → 3464300, 3939404 → 2813860), which
can be checked to satisfy eq. (1).

We thank Duy V. Nguyen and the xPhO journal club for their support to share this
finding to a wider audience.
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