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1 Problem

Without using Poynting’s theorem [1], deduce the power radiated by a small loop of current,
I(t) = I0 e−iωt, that oscillates with angular frequency ω, where the radius a of the loop obeys
ka � 1, where k = ωc = 2π/λ and c is the speed of light in vacuum, which surrounds the
loop.

2 Solution

This problem was first solved by FitzGerald in 1883 [2], one month before Poynting intro-
duced his vector [1], and several years before Hertz [3] calculated the power radiated by a
small, oscillating electric dipole (using the Poynting vector).1

The radiated power flows outwards from the source at the speed of light. Hence, we can
relate the (time-average) radiated power P to the (time-average) density u(r, θ, φ) of the
energy of the electromagnetic radiation by,

dP

dΩ
= cr2u, (1)

for distances r large compared to the size of the source, using a spherical coordinate system
(r, θ, φ) centered on the source, where dΩ = d cos θ dφ is an element of solid angle with
respect to the origin (at the center of the source). Following Maxwell [10], we understand
that the energy density u (in vacuum) can be written (in Gaussian units) in terms of the
electric and magnetic fields E and B as,

u =
E2 + B2

8π
. (2)

Although FitzGerald must have been aware of this relation, he did not use it. Rather, his
argument was based on the potentials of the electromagnetic fields.

1A study by Lamb (1883) [4] of the electrical oscillations of a spherical conductor emphasized the interior
fields, with little interest in exterior fields, where the speed of propagation was taken to be infinite. In 1884,
J.J. Thomson noted that the exterior fields of a spherical conductor with an initial nonuniform charge
distribution would die out very quickly due to energy be propagated from the shell into the surrounding
dielectric, which was considered to be largely uninteresting. Rowland (1884) [6] gave a general discussion of
spherical electromagnetic solutions to the Helmholtz wave equation, in the context of scattering of light by
spheres. The possibility of electric dipole radiation from two spherical conductors connected to an alternating
dynamo machine was discussed qualitatively by W. Thomson in his 1884 Baltimore Lectures, p. 44 of [7]
and briefly noted on p. 463 of [8]. In 1888, Heaviside [9] discussed forced electrical oscillation of spherical
conductors, arriving in sec. 27 to some understanding of electric dipole radiation, which he considered to be
a waste of energy.

1



The present problem concerns electrical currents, which can be taken to flow in a circuit
where the electric charge density is everywhere zero. Then, the electric scalar potential V is
everywhere zero.

The vector potential A is, however, nonzero. So, we can consider a relation between the
energy density and the vector potential. Such a relation was given by Maxwell in eq. (37) of
his great paper of 1864 [10], and in eq. (16) of Art. 634 of his Treatise [11],

u =
J · A
2c

. (3)

Maxwell’s equation (3) was deduced for a steady current distribution J, which would now
be called a conduction current density. In time-dependent situations, besides the conduction
current density Jconduction there also exists the so-called displacement current density,

Jdisplacement =
1

4π

∂D

∂t
→ 1

4π

∂E

∂t
, (4)

where the latter form holds in vacuum (as considered in this note). FitzGerald [2] applied
Maxwell’s “static” equation (3) to the present dynamic example, using J = Jconduction +
Jdisplacement without comment or reference to Maxwell. In this section we accept FitzGerald’s
conjecture, and comment on its validity in sec. 3.

In general, the electric field is related to the potentials according to,

E = −∇V − 1

c

∂A

∂t
. (5)

In examples such as the present where the electric charge density is zero, and consequently
V = 0, the displacement current is a function only of the vector potential,

Jdisplacement = − 1

4πc

∂2A

∂t2
=

ω2A

4πc
, (6)

where the latter form holds for when the currents depend only on a single angular frequency
ω. Combining eqs. (3) and (6), the (time-average) energy density is (at large distances where
the quasistatic magnetic-field energy of Jconduction can be neglected),

u =
ω2 |A|2
16πc2

=
k2 |A|2
16π

. (7)

FitzGerald follows Faraday and Maxwell in identifying the energy density (7) as a kind
of “kinetic” energy of the ether. In addition, they considered the electrical energy of the
system (which they called the “potential” energy). In a footnote [2], FitzGerald remarks
that the time-average “kinetic” and “potential” energies should be equal, and so the total,
time-average energy density should be twice that of eq. (7),

utotal =
k2 |A|2

8π
. (8)

Then, the (time-average) angular distribution of radiated power is, from eq. (1),

dP

dΩ
= cr2utotal =

ck2r2 |A|2
8π

. (9)
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All that remains is to find the vector potential of the oscillating current.

The current distribution Jconduction flows in a loop of radius a in the x-y plane, centered
on the origin, and is independent of azimuth φ when a � λ (ka � 1) as assumed here.
Then, the vector potential has only a φ component, and is azimuthally symmetric.

Following Lorenz [12] (1867), the vector potential observed at (r, θ, 0) can be calculated
from the retarded current density,

Aφ(r, θ, 0, t) =

∫
Jφ′(r′, t′ = t− R/c) cos φ′

cR
dVol′, (10)

where the distance R from the source point to the observer at r � a is,

R =
√

(r sin θ − a cosφ′)2 + (a sinφ′)2 + (r cos θ)2 =
√

r2 − 2ar sin θ cos φ′ + a2

≈ r − a sin θ cosφ′. (11)

For an oscillating current in the small loop of the form I0 e−iωt we can write,

Aφ(r, θ, 0, t) ≈
∫ 2π

0

I0 e−iω(t−R/c) cosφ′

cR
a dφ′ ≈ I0 a

cr

∫ 2π

0

e−iωt+iωr/c−iωa sin θ cosφ′/c) cos φ′ dφ′

≈ I0 a ei(kr−ωt)

cr

∫ 2π

0

(1 − ika sin θ cosφ′) cos φ′ dφ′ = −iπa2kI0 sin θ
ei(kr−ωt)

cr

= −ikm sin θ
ei(kr−ωt)

r
, (12)

where m = πa2I0/c is the magnetic moment of the current loop.
However, in 1883 the retarded potentials were not well known, perhaps due to Maxwell’s

apparent distrust of them [13]. It seems that FitzGerald independently (re)invented the
retarded potentials [2].2

Using the approximation (12) in eq. (9) we obtain the time-average angular distribution
of power radiated by the small oscillating magnetic dipole,

dP

dΩ
≈ ck4m2 sin2 θ

8π
=

π(ka)4I2
0 sin2 θ

8c
, (13)

whose integral is,

P ≈ π2(ka)4I2
0

3c
=

1

2

π

6

4π

c

(
L

λ

)4

I2
0 ≡ RradI

2
0

2
, (14)

where the so-called radiation resistance of a small loop of circumference L = 2πa is,

Rrad =
π

6

4π

c

(
L

λ

)4

= 197

(
L

λ

)4

Ω, (15)

2A retarded velocity potential for acoustics was described by Rayleigh in 1877 [14], which likely influenced
FitzGerald’s derivation of the retarded vector potential. Thanks to B.J. Hunt for pointing this out. See also
[15]. FitzGerald elaborated further on retarded potentials in [16]; see [17, 18, 19] for his thinking prior to
[2].
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noting that 4π/c = 377Ω (= “resistance of the vacuum”).
An implication of eq. (14) is that a DC current (ω = kc = 0) doesn’t radiate.3

3 Validity of FitzGerald’s Conjectures

FitzGerald might have argued that,

UM =

∫
B · H

8π
dVol =

∫
H · ∇ × A

8π
dVol ≈

∫
A · ∇ × H

8π
dVol

=

∫
A · [Jcond + (1/4π)∂D/∂t]

2c
dVol, (16)

where the approximation requires the neglect of the surface integral at infinity,
∫

A·H dArea,
that arises in the integration by parts in eq. (16). The vector potential A of an oscillating
magnetic dipole is purely azimuthal as its conduction currents are purely azimuthal, so the
magnetic field (in vacuum), H = B = ∇×A, has no azimuthal component, and the surface
integral vanishes for this example. But in general, eq. (16) does not hold when radiation is
present.

FitzGerald obtained correct results (13)-(14) for the power radiated by a small oscillating
current loop via a brilliant conjecture that the time-average “kinetic” energy density of the
radiation could be related to the vector potential by eq. (7), and that the time-average
“potential” energy density of the radiation has the same value.4 The latter relation is indeed
true in general (for radiation in vacuum), but eq. (7) is valid only if the electric field is
entirely due to the vector potential, which implies that the electric charge density (and the
scalar potential in the Lorenz gauge) must vanish everywhere. This requirement is met
for currents oscillating in loops if the characteristic size of the loop is small compared to a
wavelength, but it is not true in general. Hence, FitzGerald’s method is appropriate for the
problem that he considered, but does not provide a method of analysis of general oscillating
current distributions.

In particular, distributions characterized by oscillating electric-dipole moments cannot
be so analyzed. Only after Poynting [1] provided a more general view of energy density and
flow in electromagnetic fields could more general radiation problems be successfully analyzed,
starting with the great work of Hertz [3].

Furthermore, FitzGerald’s analysis does not provide an accurate assessment of the nonra-
diative (sometimes called “reactive”) energy density in the near field of the oscillating current
loop, where the densities of electric and magnetic energy are very different.5

3The present computation is performed in the dipole approximation, so one might worry that radiation
exists due to effects of higher-order multipoles. For an argument that this not so, see [20].

A different view is that radiation involves photons with nonzero frequency, but a DC current has no
nonzero frequency content, and hence no radiation. This type of argument is reviewed in [21].

4When V = 0, then E = kA, and the energy density (7) equals |E|2 /16π, which we recognize as the
time-average electric rather than magnetic energy density, despite the origin of eq. (7) in the magnetostatic
relation (3). Such complexities dramatize the contribution of Poynting [1] in clarifying the relation of the
electric and magnetic energy densities to the flow of energy in the electromagnetic field.

5See, for example, [22].
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Finally, it is interesting to note that FitzGerald regarded an oscillating current loop as a
possible model for optical radiation by an atom. He understood that atoms are smaller than
optical wavelengths, so his magnetic-dipole radiation would be a very weak effect. He does
not seem to have appreciated that such radiation by a classical atom would quickly lead to
its collapse.6
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