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This note is a kind of Abstract for the longer discussion in [1].
A recent paper advocated a nonstandard definition of EMF (electromotive force), eq. (15)

of [2], and argued that to deduce a “flux rule” from this “we must abandon special relativ-
ity”, and in any case the “flux rule” is “not a physical law”. All this serves to confuse, rather
than clarify, the issues, which seem to be somewhat controversial.

We take the view that the “flux rule” is simply the integral form of Faraday’s law (whose
differential form is ∇ × E = −∂B/∂t), with the help of Stokes’ theorem,

∮
closed loop

E · dl =

∫
∇ × E · dArea = −

∫
∂B

∂t
· dArea = − d

dt

∫
B · dArea = −dΦB

dt
, (1)

where in the case of a moving loop, bringing the time derivative outside the area integral
changes the partial derivative to a total derivative. This is a consequence of one of Maxwell’s
equations, which are compatible with special relativity. Indeed, use of both Maxwell’s second
and fourth equations for a moving, rigid circuit leads to inconsistencies when using Galilean
relativity, which are resolved by the Lorentz transformation of the electromagnetic fields, as
discussed in Appendix C of [3].

Maxwell described the first integral in eq. (1) as the “electromotive force” (EMF) in the
first and last sentences of Art. 598 of [4].1 With this usage, it is common to write the “flux
rule” as,

EMF =

∮
closed loop

E · dl = −dΦB

dt
. (2)

In Art. 598 of [4], Maxwell started from the integral form of Faraday’s law, that the
(scalar) electromotive force E in a circuit is related to the rate of change of the magnetic
flux through it by his eqs. (1)-(2) (of Art. 598),

E = −dΦB

dt
= − d

dt

∫
B · dArea = − d

dt

∮
A · dl = −

∮ (
∂A

∂t
+ (v · ∇)A

)
· dl, (3)

where B = ∇×A and the last form, involving the convective derivative, holds for a circuit
that moves with velocity v with respect to the lab frame.2 In his discussion leading to eq. (3)
of Art. 598, Maxwell argued for the equivalent of use of the vector-calculus identity,

∇(v · A) = (v · ∇)A + (A · ∇)v + v × (∇ × A) + A× (∇ × v), (4)

1In the third edition of Maxwell’s Treatise, edited by J.J. Thomson after Maxwell’s death, the term
“electromotive force” in Arts. 598-600 was changed to “electromotive intensity”.

2In Maxwell’s notation, E = E , p = ΦB, (F, G, H) = A, (F dx/ds + G dy/ds + H dz/ds) ds = A · dl,
(dx/dt, dy/dt, dz/dt) = v, and (a, b, c) = B. Note that we interpret Maxwell’s (d/dt)(F, G, H) as ∂A/∂t.
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which implies for the present case,

(v · ∇)A = −v × (∇ ×A) + ∇(v · A) = −v × B + ∇(v · A), (5)

E =

∮ (
v × B − ∂A

∂t

)
· dl, (6)

since
∮ ∇(v · A) · dl = 0.

Maxwell noted that a term of the form −∇Ψ, where Ψ is a scalar field such as the electric
scalar potential, could be added to the integrand of our eq. (6), his eq. (4) of Art. 598 of [4],
with no effect on the integral. In his eq. (10) of Art. 599, Maxwell described the integrand
as the electromotive force E = v × B − ∂A/∂t − ∇Ψ. This has the implication that if
the point with velocity v were occupied by an electric charge q it would experience force
F = q(v × B + E), where E = −∂A/∂t − ∇Ψ. That is, Maxwell had, in effect, stated the
“Lorentz” force law in of Art. 599 [4], though this largely went unrecognized at that time
(while it is acknowledged in [2].)

Our eq. (6) corresponds to Maxwell’s eq. (4) of Art. 598 of [4], which is eq. (1) of [2].
It appears to be not gauge invariant, and as such could be called “nonphysical”. However,
Maxwell’s eq. (10) of Art. 599 of [4] is gauge invariant, and better written with E rather
than −∂A/∂t−∇Ψ. Then, we understand that Maxwell deduced an alternative form of our
eq. (2),3

EMF =

∮
(E + v × B) · dl = EMFfixed loop + EMFmotional, (7)

where,

EMF fixed loop(t) = − ∂

∂t

∫
loop at time t

B · dArea = −
∫

loop

∂B

∂t
· dArea =

∮
loop

E · dl, (8)

and,

EMFmotional =

∮
loop

v × B · dl, (9)

in which v is the velocity (in the inertial lab frame of the calculation) of an element dl of
the loop (which may or may not be conducting).

The two methods, eq. (2) and eq. (7), of computing induced EMF s, give the same results
(when correctly computed), although for examples with moving circuit elements, the method
of eq. (7) is generally easier to apply.

The “flux rule” (2) is rather abstract for an arbitrary closed loop, and only has “practical”
significance if the closed loop is an electrically conducting path. Even then, if the conductors

3The first clear statement of the equivalence of eqs. (2) and (7) may be in sec. 86 of the text of Abraham
(1904) [5], which credits Hertz (1890) [6] for inspiration on this. Boltzmann understood this equivalence in
1891 [7], but did not express it very clearly. An early verbal statement of this in the American literature
was by Steinmetz (1908), pp. 1352-53 of [8], with a more mathematical version given by Bewley (1929) in
Appendix I of [10]. Textbook discussions in English include that by Becker, pp. 139-142 of [9], by Sommerfeld,
pp. 286-288 of [11], by Panofsky and Phillips, pp. 160-163 of [12], and by Zangwill, sec. 14.4 of [13].
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along the loop are moving, the interpretation of eq. (2) is difficult,4 such that many people,
including Feynman [15], advocate use of our eqs. (7)-(9), with the view that the “flux rule”
does not take motion of the loop into account, and is just our eq. (8),

EMFfixed loop(t) = −
∫

loop at time, t

∂B

∂t
· dArea. (10)

A review (with over 500 references) of the debate over the versions of the “flux rule” is
given in [1], sec. 2.4 of which includes six examples of circuits with moving parts that can
be analyzed via our eq. (2) as well as our eqs. (7)-(9).5

It was stated in eq. (1) of [2] that in Maxwell’s eq. (4) of Art. 599, our eq. (6), the velocity
v is not that of the line element but of the conduction charges at that point. This is not
what Maxwell said, and while eq. (1) of [2] should “rapidly fall into oblivion”, Maxwell’s
version is “alive and well” in the form of our eqs. (7)-(9) that are (sensibly) advocated by
many as the best way to analyze the EMF induced in moving circuits.
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