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1 Problem

Deduce forms of a static magnetic field B(x) such that the Lorentz force density J x B on
the associated current density J is everywhere zero.!?

Assuming that the medium has permeability 1, (and that any electric field is also static),
the current density is proportional to V x B, so the Lorentz force vanishes if (VxB)xB = 0,

which obtains when,
V xB = f(x)B (1)

for any scalar function f(x), noting that V - B = 0. In particular, the function f can be a
constant k, such that any (vector) eigenfunction of the curl operator is a possible force-free
magnetic field.?

2 Solution

2.1 Cowling’s Theorem

Force-free magnetic fields are a possible model of the magnetic fields of planets, stars and
other astrophysical regions, which fields are observed to be quasistatic. The question of
static, force-free magnetic fields seems to have been first considered by Cowling [5, 6], who
concluded that they cannot exist if they are to be axially symmetric. This result is sometimes
called Cowling’s Theorem. A corollary is that the Earth’s magnetic field is dynamic and/or
nonaxisymmetric.

However, it appears that this theorem holds only with the additional assumption that
the magnetic field has no azimuthal component By [7], contrary to the claim of Cowling.

A static, force-free magnetic field has J x V x B o B, so the magnetic field exists only
where the current density J is nonzero. Thus, there is no force-free magnetic field external
to the current distribution, and such a field cannot apply to astrophysical objects such as the

!There is no such thing as a force-free electric field, since force density oF on charge density o can be
zero only if E = 0 wherever g # 0, but the first Maxwell equation V - E = g/¢o implies that E is nonzero
wherever the volume charge density p is nonzero.

2The conducting medium is subject to internal stresses described by the Maxwell stress tensor,
(1/po)(B;B; — 8;;B?/2), which are always nonzero for nonzero B and can lead to deformations of the
medium even if the Lorentz force is small/zero [1].

3If the vector B represents the velocity v of an incompressible fluid, then condition (1) corresponds to
so-called Beltrami flow (1889). Vectors that obey eq. (1) are sometimes called Trkalian (1919). See, for
example, [2, 3, 4].



FEarth and Sun that have external magnetic fields. Thus, the corollary of Cowling’s theorem
that the Earth’s magnetic field is dynamic and/or nonaxisymmetric appears to be basically
correct.* However, the concept of a static, force-free magnetic field remains interesting in
principle.

2.2 Lundquist’s Solution

The first demonstration of a static, force-free magnetic field is due to Lundquist [9, 10],> who
considered eq. (1) with f = k in cylindrical coordinates (p, ¢, z) for fields with dependence

only p,

OB, 19(pBy)
— kB, - — kB.. 2
o s > (2)

A particular solution to eq. (2) is,
B, =0, B, = Ji(kp), B, = Jo(kp), (3)

where Jy and .J; are Bessel functions. The field lines are helices [9], and since the Bessel
functions are oscillatory in p there are both left- and righthanded helices, and ones with both
positive and negative B,. Such a complex field pattern seems somewhat unlikely to occur in
Nature, but it is suggestive that other force-free forms exist as well.

2.3 Other Simple Force-Free Magnetic Fields

In rectangular coordinates a force-free field that depends only on z obeys,

0B, 0B,
T kB, — kB, 1
0z 0z Y (4)
A particular solution to eq. (4) is,
B, = coskz, B, = —sinkz, B. =0, (5)

for which V - B = 0. The lines of B are straight in any plane of constant z, making angle
¢ = kz to the z-axis. As with the example in sec. 2.2, this is not a physically plausible field

configuration.
A force-free field that depends only on z in cylindrical coordinates must obey,
0By 0B By
— kB =’ _ kB — = kB.. 6
0z 7 0z & P (6)
A particular solution to eq. (6) is,
B, = By, By =0, B, =0. (7)

4For a simplified discussion, see pp. 6-7 of [8].
®Equation (3) with B interpreted as fluid velocity v dates back to [11].



However, V-B = B —0/p, so eq. (7) cannot represent a magnetic field (contrary to a claim
in sec. II(a) of [12]).

In spherical coordinates (7,0, ¢) a force free field that depends only on 7 obeys,
8(rB¢) a(TBg)

a/’n r 05 alr, r ¢7 ( )

for which there is no nontrivial solution, contrary to a claim in sec. III(a) of [12].

It appears that a more general method is needed to deduce the forms of additional force-
free magnetic fields.

By = krtan0B,,

2.4 A General Solution

Considerations [13] subsequent to Lundquist’s [9, 10] soon led to a general solution for force-
free magnetic fields [14, 15, 16, 17].5 Taking the curl of eq. (1) with f = k, we have that,

V x (V xB)=V(V-B)-V’B = k’B, (9)

and hence, force-free magnetic fields are a subset of solutions to the vector Helmholtz equa-
tion,

(V2 +k*)B = 0. (10)

A useful decomposition of solutions to the vector Helmholtz equation is due to Hansen
[18] (see also sec. 7.1 of [19]), in which we write the field B as a linear sum of three fields,

1
S =V, T=V x¢a=Viy xa, and P:EVXT’ (11)

for any function 1 that obeys the scalar Helmholtz equation,
(V2+ &)y =0, (12)

where a is either a constant vector or the position vector x (= rr in spherical coordinates
(r,0,¢)). The three fields S, T and P have been named scaloidal, toroidal and poloidal,
respectively, by Elasser [20].7 The scaloidal/irrotational term S does not contribute to
magnetic fields, which obey V - B = 0, and we have that,

B=P+T. (13)

Since T obeys eq. (10), and V - T = 0, it follows from eq. (11) that,

1 1 1
VxP=_Vx(VxT)=—VT=4T, ad T=_VxP, (14)

and hence,
VxB=VxP+VxT=kT+EkP =kB. (15)

6Independently, general solutions to eq. (1) with B interpreted as fluid velocity v have been developed
by several authors, as summarized in [2, 3].

"Equation (11) is a variant on the Helmholtz decomposition of any vector field (see, for example, [21]),
in which S corresponds to the irrotational part, and P + T to the rotational part, of B.
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Thus, the form (13) is an eigenfunction of the curl operator, and is a force-free magnetic
field.®

It remains to consider a general set of solutions v to the scalar Helmholtz wave equation
(12), which has separable solutions in 11 coordinate systems [23]. Here, we consider the
basic three.?1°

2.4.1 Solution in Rectangular Coordinates

Solutions to the scalar Helmholtz wave equation (12) in rectangular coordinates have the
form of plane waves,

) = ™, (17)
where the wave vector k = (kg ky, k.) can have complex components, so long as k* =
k2 + k‘; + k2. Then,

Vi = ik e™>, (18)

and the toroidal component of the force-free magnetic field can be taken as,
T = V¢ x x = ik x x ™, (19)

from which we obtain the poloidal component as,

P = %V x T =V x (ik x x %) = ikV - (x e™¥) — j(k - V)x k>
= 3ike™®* — k(k - x) % — jk X 4 fx o™X, (20)
Thus, a force-free magnetic field can be written as,
B =P+ T =2k — (k-x)k+ kx + ik x x] e’**. (21)
For example, if k = (0,0, k), then,
B = [2iz — k22 + kx — ikyXx + ikz §] ™ = [k(z — iy) X + k(y +iz)y + 2iz] ™. (22)
Alternatively, the toroidal component of the force-free magnetic field can be taken as,

T = V¢ x a=ik x ae™, (23)

for any constant vector a. In this case the poloidal component is,

1 A . A . P
P = EVXT:VX(z’kxae“"x):—kx(kxa)e“"x:[ka—(k~a)k]e“"x. (24)

8A variant on the above is that for any magnetic field B’ that satisfies the vector Helmholtz equation
(10), the field,

1
B=B+ VxB (16)
is force free [22], which can be used to deduce time-dependent forms.

9For a solution in toroidal coordinates, see [24].
0For a different characterization of eigenfunctions of the curl operator, see [25].
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Thus, a force-free magnetic field can also be written as,

B=P+T=[ka— (k-a)k+ik x a] e’ (25)
For example, if k = (0,0, k), then,
B = [ka — ka, z + ik 2 x a] e'**. (26)

With a = x/k we obtain,
B = (x +iy) ™, (27)

whose real part is the form (5).

2.4.2 Solution in Cylindrical Coordinates

In cylindrical coordinates (p, ¢, z), solutions to the Helmholtz equation (12) that are finite
on the z-axis can be written (see, for example, sec. 7.1 of [19]),

b = Julkyp) 519, (28)

where n is a non-negative integer, .J, is a Bessel function and k2 + k2 = k*. Then,
dn(kyp) o | . | )
an _ d( Pp) 6z(kzz+n¢) p + ﬂt]n(kpp) 6Z(kzz+n¢) ¢ + Zkzt]n(kpp) 6Z(kzz+”¢) 7. (29)
P P

We consider only the choice of a = z/k in eq. (11), such that,

T, = = () ) o T e g (30)
and,
p, = e @Inlhpp) isins) oy Kot ) g s g ks Ju(hop) €419 5 (31)
k2 dp k2p k?
noting that Bessel’s equation has the form,
o () ) (32
Of, course, the force-free magnetic field has the form,"
B, =P, +T,. (33)
For example,
by = Jolkp)e™?, (34)
By Zkgf =Ji(kpp) ™= p — %Jl(kpp) " g — Z—’EJo(kpp) S (35)
In particular, if k, = 0 then k, = k and we obtain (to within a minus sign) the form (3),
By (k. = 0) = Ji(kp) ¢ + Jo(kp) 2, (36)

as found by Lundquist [9].

"The forms (30)-(31) and (33) are often called the Chandrasekhar-Kendall eigenfunctions, although they
were not explicitly displayed in [16]. They form a complete set of eigenfunctions of the curl operator [26].
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2.4.3 Solution in Spherical Coordinates

In spherical coordinates (7,0, ¢), solutions to the scalar Helmholtz equation (12) can be
written in various ways, as discussed in sec. 7.3 of [19], sec. 9.6 of [27], etc. A form that is
finite at the origin and on the z-axis is,

it = jn(kr) P (cos ) eme (37)

n

m and n are integers, n > 0, |m| < n, j, is a so-called spherical Bessel function,

) sin x ) sinx cosz . 3 1\ . 3cosx
o) = i) = B ) = (S D sine - 2B ey

and P (y) is an associated Legendre function,

3y? —1
Py)=1, P =y, P'ly==+J/1-y% P= y2 . (39)
Then,
opr 1oy . 1 oYl A
m o _ n = n n 4
Vi or r+7" 00 +Tsin0 0¢p ¢ (40)
o djn(lﬁ") m ime - jn(k’T) dpfln(COS 6‘) imo A im m imeo
=4 P (cosf)e™?r + . 7 e’ + rsin@jn(kT)P" (cos ) e™? .
a=rr

We consider first the choice of a = x = rr in eq. (11), such that [16, 28, 29],

im dP!™(cos )

D= b E (cos )¢ 8 — i (k) ) (e g (1)
and,
mo n(n + 1) . m ime 1 1 d[?"]n(lﬁ")] dpfln(COS 6‘) imo g
P = = Jn(kr)P*(cos @) e’ T + — 70 e"? 0
im  d[rj,(kr)] NN
Pm imep 49
kr sin 6 dr w (cos0) €™ &, (42)

noting that the associated Legendre functions obey the differential equation,

1 d (. , dP™(cos) m?
il Zn VPP Y = — 1) | P ) 4
Sin0 b (Sme do ) (sin20 n(n+ )) v (cost) (43)
Of course, the force-free magnetic fields are,
B"=P"+T" (44)



For example,

sin kr
ng = kr Bg = 07 (45)
sinkr  coskr
P = ( R R ) cosf, (46)
0o sinkr  coskr R sin kr 1 coskr| . .
B, = 2( o ) cosOr — { = (1 ~ 12,0 + 12,2 sin 6 6
sinkr coskr\ . -
( P R—— )51n9¢. (47)

For small r, such that kr < 1,

Bl(kr < 1) =~ g(cos@f' —sinf0) — hrsin 0 ¢ = gi _ hrsind b. (48)
3 3 3 3
a=12
We can also consider that a = z = cos 0 — sin @ in eq. (11) [3], for which,
1 azp cot @ O oY cosb azp
T = ko
) T 0¢0 ( 96T+ r 2 (49)
and,
B 1 0 aw sin  cos 0 0y cot 62w
b= krsin 0 {09 (s1n29 or r %) * T O¢?
1 1 0% ¢ 2
+k:7" {TSIH@ ¢° e ne% ( 87") o 8067"09} d
1 *y 1 9% ] 4
T {‘m O oroe Faea(p} ¢ (50)

For the case of no azimuthal dependence, 0v/0¢ = 0, the force-free magnetic field has the
form,

1 ov 1 ov. 1 -
B=P+T=— % §_ oz
- krZsing 00 . krsing or 0+ Tsin9q]¢’ (51)
where, 2
U= (7" sin Og—f + sin @ cos Gg—g) = —pg—i, (53)

12The function V¥ is akin to a stream function in fluid dynamics, as discussed in secs. 4.5 and 5.1 of [2].
Of course, ¥ = —p d/dp can also be introduced in cylindrical coordinates (sec. 2.4.2) in case of azimuthal
symmetry, for which,

1 0¥ 1_ - 1 0¥
el L, 3 SRS
kp 82p ¢+

B=P+T=
k‘papz

(52)



with p = rsinf. Then, since (V xB), = kBy, the auxiliary function W obeys the differential
equation,

0 sin@ﬁ( 1 o0U

[ - 2 —
o2 2 90 \sind 09) =0 (54)

For example,

o ey =
U, = sinkkr cosf, B, = _s;r;?ir r— CO;TkT cot 00 + sizfr cot 6§ ¢, (56)
U, = (S;r;g - CO;TM) sin® 0, (57)
B, = 2 (S;I;?ir — CZST]ZT) cosfr — {SiZfT (1 — k217"2) + CZSTIZT] sin 0 0

(SZ;ZT - CO;TM) sinf ¢ = BY. (58)

Note that By and B, are infinite on the z-axis, which reminds us that the P" in eq. (37)
could also be the associated Legendre functions of the second kind, Q™.

The fields obtained using a = rr are not independent of those found using a = z. It is
shown in [29] that the former set of fields is complete.

2.5 Exponential Decay of a Force-Free Magnetic Field

The fourth Maxwell equation relates the curl of the magnetic field to the conduction current
J and the so-called displacement current ¢y OE/0t,

V x B =y, (J+606—E). (59)

ot
In astrophysical situations the time dependence of the currents and fields may be sufficiently
slow that the displacement-current term in eq. (59) can be neglected. In this case we can
write,

1
J(t) = —V x B(t). (60)
Ho
If the currents flow in a medium of electrical conductivity o, they are related to the electric

field by J = oE, and eq. (60) tells us that,

E(t) ~ MOLUV < B(0). (61)

13The form By is probably what was meant to have been found in sec. II1(a) of [12].



Faraday’s law then gives,

0B 1 1
— =-VxE~-—Vx(VxB)=—V’B. (62)
ot HoO HoO

If the quasistatic magnetic field is force-free, then from eq. (10) we have,

0B k?
— ~ ——B, (63)
ot Lo
such that [9],
B(x.) ~ By(x) e 0/, (64)

where By(x) is a static, force-free magnetic field. Hence, if a force-free magnetic field could
be established in a (poorly) conducting medium, it would decay away slowly without change
to its spatial configuration [9].
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