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1 Problem

Calculate the angular frequency Ω of free precession of a planet or star whose angular fre-
quency of rotation about its axis is ω.

For this you may use the following slightly contradictory model. First suppose the shape
of the object, whose density ρ is uniform, can be determined by the condition of hydrostatic
equilibrium to relate the equatorial radius to the polar radius in the form rE = rP (1 + ε).
Deduce an expression for ε in terms of ω, M and rP , where M ≈ 4πρr3

P/3 is the mass of the
object. Then, suppose the object can be treated as a rigid body whose principal moments
of inertia obey (IP − IE)/IP = ε to deduce Ω.

This model works fairly well for the Earth, whose observed free precession period of 430
days (Chandler, 1891 [1]) is about 1.6 times that as estimated above.1 The Chandler wobble
is thought to be driven by surface wind and water [4]. First evidence for free precession
of a pulsar, PSR B1828-11, has recently been reported by Princeton Ph.D. I.H. Stairs [5],
with a period about 1/150 that of the above model. This discrepancy is ascribed to little
understood aspects of the superfluid interior of the pulsar.

2 Solution

2.1 Parameter ε

We calculate in the rest frame of the rotating object, and suppose that the surface follows an
equipotential of the combined gravitational potential φG and centrifugal potential φC. The
latter corresponds to the centrifugal force,

FC = ω2r⊥r̂⊥ = −∇φC, (1)

where r⊥ = r sin θ is the distance between the axis of rotation and a point on the surface, in
the obvious spherical coordinate system. Thus, the centrifugal potential has the well-known
form,

φC = −ω2r2
⊥

2
= −ω2r2 sin2 θ

2
. (2)

Because the object is oblate, with radius r ≈ rP (1 + ε sin θ), its gravitational potential
is not simply GM/r. We include the effect of the quadrupole moment M2 in a multipole
expansion of the potential,

φG ≈ −GM

r
− GM2P2(cos θ)

r3
, (3)

1The existence of free precession was anticipated by Newton [2], Euler estimated the period of free
precession of the Earth as 305 days in 1765 [3].
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where,

M2 =

∫
ρr2P2dVol

= 2πρ

∫ π

0

sin θ dθ
3 cos2 θ − 1

2

∫ rP (1+ε sin θ)

0

r4dr

= πρr5
P

∫ π

0

sin θ dθ(3 cos2 θ − 1)
(1 + ε sin θ)5

5

≈ πρr5
P

∫ π

0

sin θ dθ(3 cos2 θ − 1)

(
1

5
+ ε sin θ

)

= περr5
P

∫ π

0

sin2 θ dθ(3 cos2 θ − 1)

= περr5
P

∫ π

0

dθ

(
3 sin2 2θ

4
− sin2 θ

)

= −π2ερr5
P

8
.

≈ −3πεMr2
P

32
. (4)

In the above, we approximated the total mass M by 4πρr3
P/3, but in detail the assumption

of a shape r = rP (1 + ε sin θ) leads to M = (4πρr3
P/3)(1 +3ε/4). The resulting correction to

eq. (4) is of order ε2, and is neglected.
In this approximation, the potential φ is,

φ(r, θ) = −GM

r
+

3πεGMr2
P P2(cos θ)

32r3
− ω2r2 sin2 θ

2
. (5)

Taking the surface to be an equipotential, we can write,

φ(rP , 0) = −GM

rP
+

3πεGM

32rP
= φ(rE , π/2) = − GM

rP (1 + ε)
− 3πεGMr2

P

64r3
E

− ω2r2
E

2
.

≈ −GM

rP
(1 − ε) − 3πεGM

64rP
− ω2rP2

2
, (6)

where we note that ω2r2
P � GM/rP . Thus,

ε ≈ ω2r3
P

2GM(1 − 9π/64)
=

ω2rP

1.12g
=

3.6π2rP

gT 2
, (7)

in terms of the surface gravity g = GM/r2
P and the period of rotation T = 2π/ω.

For example, the polar radius of the Earth is r = 6, 356, 752 m [6], the equatorial radius
is 6,378,137 m, the surface gravity is g = 9.8 m/s2 and T = 8.64×104 s, so that prediction is
ε = 0.0037, compared to the observed result of 0.0033. The pulsar PSR 1828-11 has T = 0.4
s, and we estimate that M = 2.8× 1030 kg (the Chandrasekhar mass) and radius r = 104 m,
for which our model predicts that ε = 7 × 10−7.

Remark: If we ignore the effect of the quadrupole deformation on the gravitational
potential, we find from eq. (6) that ε ≈ ω2rp/2g, which is still not too bad an approximation.
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2.2 The Free Precession Rate

Following Euler, we write the torque-free equation of motion as,

N = 0 =
dL

dt
, (8)

where L = I·ω is the angular momentum and I is the inertia tensor. To avoid the complication
of a time-dependent inertia tensor, we introduce the (orthogonal) body axes 1̂ = the axis of
rotation, and 2̂ and 3̂. The body axes rotate with angular velocity �ω. In the body frame
the inertia tensor is constant in time and diagonal with I11 = IP and I22 = I33 = IE, so that
the constant angular momentum can be written,

L = IP ω1 1̂ + IE ω2 2̂ + IE ω3 3̂ = (IP − IE)ω1 1̂ + IE ω. (9)

If we write the time rate of change of a vector a in the body frame as δa/δt, then the
lab-frame time derivative da/dt is,

da

dt
=

δa

δt
+ ω × a. (10)

The equation of motion (8) now becomes,

0 = (IP − IE) ω̇11̂ + IE ω̇ + ω × [(IP − IE)ω1 1̂ + IE ω]

= (IP − IE) ω̇1 1̂ + IE ω̇ − (IP − IE)ω1 1̂ × ω, (11)

where the dot indicates time differentiation in the lab frame.2 The 1̂ component of this
equation is simply 0 = IP ω̇1, so that ω̇1 = 0. We can therefore rewrite eq. (11) as,

ω̇ =
IP − IE

IE
ω1 1̂ × ω. (12)

Thus, in the body frame the angular velocity precesses about the polar axis with angular
velocity,

Ω =
IP − IE

IE
ω1, (13)

which is called the angular velocity of free precession.
For an oblate spheroid with rE = rP (1 + ε), we have that,

Ω = ε ω1, (14)

using ε = (IP − IE)/IE , as verified in the Appendix.
The period of free precession is then,

Tprecess =
2π

ε ω1
≈ T

ε
, (15)

as the model for ε makes sense only for �ω ≈ ω11̂.
This model predicts that Tprecess ≈ 1/0.0037 = 270 days, compared to the observed

period of 430 days (Chandler [1]).3 The predicted period of free precession for the pulsar
PSR 1828-11 is 7 days, compared to the observed period of about 1000 days [5].

2For a scalar quantity such as ω1, dω1/dt = δω1/δt, and the vector �ω obeys d�ω/dt = δ�ω/δt according to
eq. (10).

3Discussions of the effect of nonrigidity on the observer period are given in, for example, [7, 8, 9].
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3 Appendix: The Moment of Inertia of a Uniform

Ellipsoid about a Principal Axis

Given an ellipsoid described by,
x2

a2
+

y2

b2
+

z2

c2
= 1, (16)

with uniform mass density ρ, the moment of inertia about the x axis is,

Ix = ρ

∫ a

−a

dx

∫ (b/a)
√

a2−x2

−(b/a)
√

a2−x2

dy

∫ (c/ab)
√

b2(a2−x2)−a2y2

−(c/ab)
√

b2(a2−x2)−a2y2

dz (y2 + z2)

=
8ρc

a3b3

∫ a

0

dx

∫ (b/a)
√

a2−x2

0

dy

(
a2b2y2

√
b2(a2 − x2) − a2y2 +

c2

3
(b2(a2 − x2) − a2y2)3/2

)

=
8ρc

a4b3

∫ a

0

dx

∫ b
√

a2−x2

0

du

(
b2u2

√
b2(a2 − x2) − u2 +

c2

3
(b2(a2 − x2) − u2)3/2

)

=
πρbc(b2 + c2)

2a4

∫ a

0

dx (a2 − x2)2 =
4

15
πρabc(b2 + c2) =

M

5
(b2 + c2), (17)

where M = 4πρabc/3 is the mass of the ellipsoid.
For an oblate spheriod with a = r and b = c = r(1 + ε), we have that,

IP = Ix =
2

5
Mr2(1 + ε)2 ≈ 2

5
Mr2(1 + 2ε), (18)

and,

IE = Iy =
1

5
M(a2 + c2) =

1

5
Mr2(1 + (1 + ε)2) ≈ 2

5
Mr2(1 + ε). (19)

Then,
IP − IE

IE
≈ ε, (20)

as claimed.
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