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1 Problem

Calculate the angular frequency €2 of free precession of a planet or star whose angular fre-
quency of rotation about its axis is w.

For this you may use the following slightly contradictory model. First suppose the shape
of the object, whose density p is uniform, can be determined by the condition of hydrostatic
equilibrium to relate the equatorial radius to the polar radius in the form rg = rp(1 + €).
Deduce an expression for € in terms of w, M and rp, where M = 47pr? /3 is the mass of the
object. Then, suppose the object can be treated as a rigid body whose principal moments
of inertia obey (Ip — Ig)/Ip = € to deduce Q.

This model works fairly well for the Earth, whose observed free precession period of 430
days (Chandler, 1891 [1]) is about 1.6 times that as estimated above.! The Chandler wobble
is thought to be driven by surface wind and water [4]. First evidence for free precession
of a pulsar, PSR B1828-11, has recently been reported by Princeton Ph.D. I.H. Stairs [5],
with a period about 1/150 that of the above model. This discrepancy is ascribed to little
understood aspects of the superfluid interior of the pulsar.

2 Solution

2.1 Parameter ¢

We calculate in the rest frame of the rotating object, and suppose that the surface follows an
equipotential of the combined gravitational potential ¢, and centrifugal potential ¢.. The
latter corresponds to the centrifugal force,

Fo =W t) = Vg, (1)

where r; = rsin @ is the distance between the axis of rotation and a point on the surface, in
the obvious spherical coordinate system. Thus, the centrifugal potential has the well-known

form,
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Because the object is oblate, with radius r ~ rp(1 + esinf), its gravitational potential
is not simply GM/r. We include the effect of the quadrupole moment M, in a multipole

expansion of the potential,
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!The existence of free precession was anticipated by Newton [2], Euler estimated the period of free
precession of the Earth as 305 days in 1765 [3].
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In the above, we approximated the total mass M by 4mpr /3, but in detail the assumption
of a shape r = rp(1 +esinf) leads to M = (4mwprd/3)(1 + 3¢/4). The resulting correction to
eq. (4) is of order €%, and is neglected.

In this approximation, the potential ¢ is,
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Taking the surface to be an equipotential, we can write,
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where we note that w?r? < GM/rp. Thus,
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in terms of the surface gravity g = GM/r% and the period of rotation T = 27 /w.

For example, the polar radius of the Earth is r = 6,356, 752 m [6], the equatorial radius
is 6,378,137 m, the surface gravity is ¢ = 9.8 m/s? and T = 8.64 x 10 s, so that prediction is
e = 0.0037, compared to the observed result of 0.0033. The pulsar PSR 1828-11 has T'= 0.4
s, and we estimate that M = 2.8 x 10%Y kg (the Chandrasekhar mass) and radius r = 10% m,
for which our model predicts that e = 7 x 1077,

Remark: If we ignore the effect of the quadrupole deformation on the gravitational
potential, we find from eq. (6) that € ~ w?r,/2g, which is still not too bad an approximation.
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2.2 The Free Precession Rate

Following Euler, we write the torque-free equation of motion as,

dL
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where L = |-w is the angular momentum and | is the inertia tensor. To avoid the complication

of a time-dependent inertia tensor, we introduce the (orthogonal) body axes 1 = the axis of
rotation, and 2 and 3. The body axes rotate with angular velocity &. In the body frame
the inertia tensor is constant in time and diagonal with [1; = Ip and [y = I33 = [, so that
the constant angular momentum can be written,

L=Ipwl4+Igw2+Tpwsd3=(Ip—1Ig)wl+Ipw. (9)

If we write the time rate of change of a vector a in the body frame as da/dt, then the
lab-frame time derivative da/dt is,
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The equation of motion (8) now becomes,
0 = (Ip—Ip)iil+Ipw+wx|[Ip—Ig)w 1+ Ipw]
= (Ip—Ig)inl+Tpw— (Ip—Ig)wil x w, (11)

where the dot indicates time differentiation in the lab frame.2 The 1 component of this
equation is simply 0 = Ipwy, so that wy = 0. We can therefore rewrite eq. (11) as,

Ip—1 .
w=""T1xw. (12)
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Thus, in the body frame the angular velocity precesses about the polar axis with angular

velocity,
Ip—Ig

I
which is called the angular velocity of free precession.
For an oblate spheroid with rg = rp(1 + €), we have that,

Q= €Wi, (14)

Q= Wi, (13)

using € = (Ip — Ig)/Ig, as verified in the Appendix.
The period of free precession is then,
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as the model for ¢ makes sense only for & ~ w;1.
This model predicts that Tprecess = 1/0.0037 = 270 days, compared to the observed
period of 430 days (Chandler [1]).*> The predicted period of free precession for the pulsar

PSR 1828-11 is 7 days, compared to the observed period of about 1000 days [5].

2For a scalar quantity such as wy, dwy /dt = dw;/dt, and the vector & obeys di/dt = §& /6t according to
eq. (10).
3Discussions of the effect of nonrigidity on the observer period are given in, for example, [7, 8, 9].



3 Appendix: The Moment of Inertia of a Uniform

Ellipsoid about a Principal Axis

Given an ellipsoid described by,
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with uniform mass density p, the moment of inertia about the = axis is,
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where M = 4mpabe/3 is the mass of the ellipsoid.
For an oblate spheriod with @ = 7 and b = ¢ = r(1 + €), we have that,
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and,
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Then,
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as claimed.
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