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1 Problem

A refrigerator magnet in the form of a thin disc with magnetic moment μ parallel to its axis
is initially arranged for that axis to precess at angle θ around a uniform external magnetic
field B. What is the damping time of the motion due to magnetic dipole radiation?1

This problem was suggested by Shivaji Sondhi.

2 Solution

We label the unit vector along the axis of the magnet as 1̂; the unit vector in the midplane
of the magnet and in the 1̂-B plane is 2̂; then the unit vector 3̂ = 1̂ × 2̂ also lies in the
midplane of the magnet. For the precession angular velocity ω to be in the same direction
as B, the magnetic moment μ is along the −1̂-axis (to be confirmed in eq. (5)), as in the
figure below.

If the thin disc has mass m and radius r, then its inertia tensor has diagonal elements
(I11, I22, I33) = mr2(2, 1, 1)/4. The initial angular velocity ω = ω(cos θ, sin θ, 0) is parallel to
B, at angle θ to the 1̂-axis. The “mechanical” angular momentum of the precessing disc is,

Lω = I · ω =
mr2ω

4
(2 cos θ, sin θ, 0). (1)

In addition, there is angular momentum associated with the electrons whose magnetic mo-
ments comprise the total magnetic moment μ,

Lμ = −mec

e
μ ≈ −6 × 10−8μ(1, 0, 0), (2)

1A related example concerns the spin down of magnetars [1].
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in Gaussian units, where me and e > 0 are the mass and (magnitude of the) charge of an
electron, and c is the speed of light in vacuum.

For the time being, we neglect the angular momentum LEM in the time-dependent elec-
tromagnetic field of the rotating magnetic dipole μ.

2.1 Lμ � Lω

A neodymium magnet has mass density ρ = m/Vol = 7 g/cm3 and magnetization density
M = μ/Vol ≈ 1000 cgs units,2 so |Lμ| /Lω ≈ 6 × 10−8M/ρ r2ω ≈ 10−5 for a magnet with r
and ω of order unity, and we will neglect Lm in the following.

In this approximation, the total initial angular momentum is,

L ≈ Lω =

(
mr2ω cos θ

2
,
mr2ω sin θ

4
, 0

)
≡ L(cos α, sinα, 0), (3)

where the magnitude L of the angular momentum, and its angle α to the 1̂-axis, are related
by,

L =
mr2ω

4

√
1 + 3 cos2 θ, tan α =

tan θ

2
, cos α =

2cos θ√
1 + 3 cos2 θ

. (4)

The (torque) equation of motion for steady precession is (neglecting dLEM/dt),

dL

dt
= ω × L = τ = μ × B, ωL sinβ = μB sin(π − θ) = μB sin θ, (5)

where the scalar equation is for the component along the −3̂-axis, β = θ − α, and ω and B
point in the same direction for μ along the −1̂-axis. Then, recalling eq. (4),

sinβ = sin θ cosα − cos θ sinα = sin θ cos α(1 − cot θ tan α) =
sin θ cosα

2
=

sin θ cos θ√
1 + 3 cos2 θ

, (6)

and the equation of motion (5) can be rewritten as,

mr2ω2

4
cos θ = μB, ω2 =

4μB

mr2 cos θ
. (7)

This implies that μB and mr2ω are of the same order, and that ω is large compared to
unity. The latter relation further suppresses the ratio |Lm| /Lω considered previously, which
reinforces that we can neglect the angular momentum Lm. Equation (7) also indicates that
steady precession could only exist for θ < π/2.

However, when we consider the energy of the system, using eq. (7),

U = T + V =
ω · I · ω

2
−μ · B =

mr2ω2

8
(1 + cos2 θ) + μB cos θ =

μB

2

(
3 cos θ +

1

cos θ

)
, (8)

the kinetic and potential energies are comparable.

2This corresponds to residual induction (saturation remanence) of B = 4πM ≈ 13, 000 gauss.
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Assuming that the motion is always just precession of the disc about B, the time rate of
change of the energy is,

dU

dt
=

μB sin θ

2 cos2 θ
θ̇(1 − 3 cos2 θ). (9)

The energy has a minimum at cos2 θ = 1/3, θ = 54.7◦.
At last, we come to consideration of the radiation of energy by the precessing magnetic

moment,

dU

dt
= −2μ̈2

3c3
= −2μ2ω4 sin2 θ

3c3
= −32μ4B2 tan2 θ

3m2r4c3
, (10)

recalling, for example, eq. (71.5) of [2], and using our eq. (7). From eqs. (9) and (10) we
have that,

θ̇ = − 64μ3B sin θ

3m2r4c3(1 − 3 cos2 θ)
, (11)

However, there is an inconsistency in the above analysis, in that the precessing disc
always radiates energy, while the assumption of precession led to the identification of an
energy minimum at θ = 54.7◦. It appears that the (adiabatic) model of instantaneous
precession of the disc about B is not sufficiently accurate.

Another difficulty with this example is that the steady precession of a refrigerator magnet
in, say, a magnetic field of 1 T = 10,000 gauss leads to internal stresses close to the breaking
strength. As noted in [3] the maximum angular velocity or rotation of a ring of radius r and
cross-sectional area A about its axis is related by,

ω2
maxr

2 =
Tmax/A

ρ
, (12)

where Tmax/A ≈ 107 dyne/cm2 is the breaking strength. Comparing with eq. (7), we have
that,

ω2r2 =
4μB

m cos θ
=

4MB

ρ cos θ
=

4ω2
maxr

2

cos θ
> ω2

maxr
2, (13)

for M = 1000, B = 10, 000 gauss and ρ = 7 g/cm3, so the precessing disc would break apart.

3



2.2 Lω � Lμ

We now consider the case of very low angular velocity and weak external magnetic fields, in
which we can neglect the angular momentum Lω compared to the tiny angular momentum
Lμ associated with the magnetic moment μ of the refrigerator magnet. In this case, the
angular momentum is along the 1̂-axis,

L ≈ Lμ(1, 0, 0), (14)

and the equation of motion (5) reduces to,

ω =
μB

Lμ

=
eB

mec
, (15)

recalling eq. (2), such that the precession angular velocity is independent of angle θ.
The condition Lω � Lμ implies that,

mr2ω � mecμ

e
,

ρVol r2eB

mec
� mecMVol

e
, B � m2

ec
2M

e2ρ
= 5 × 10−15 gauss. (16)

When this holds, the kinetic energy of rotation is also negligible compared to the potential
energy, so the total energy is approximately,

U ≈ μB cos θ,
dU

dt
≈ −μBθ̇ sin θ (17)

The energy loss due to radiation is now, using eq. (14),

dU

dt
= −2μ̈2

3c3
= −2μ2ω4 sin2 θ

3c3
= −2μ2e4B4 sin2 θ

3m4
ec

7
, (18)

which together with eq. (17) tells us that angle θ increases at the rate,

θ̇ =
2μe4B3 sin θ

3m4
ec

7
, (19)

until θ = π and the magnetic moment μ becomes aligned with the magnetic field B. This
motion lasts for time,

Δt ≈ m4
ec

7

μe4B3
≈ 3 × 1050 s, (20)

for μ = M Vol = 100 cgs units and B = 10−15 gauss. This is much longer than the age of
the Universe.

2.3 General Equations of Motion for L

In this section we present a derivation of the equations of motion not presuming steady
precession, and then make an estimate for the damping time associated with radiation of
angular momentum (rather than radiation of energy) for the case Lμ � Lω.
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We work in the rotating frame of the triad (1̂, 2̂, 3̂), and write the total angular velocity
ω as,

ω = ω1 1̂ + ω2 2̂ + ω3 3̂. (21)

The magnetic field B is constant in the lab frame, and always in the 1̂-2̂ plane, at angle θ
to the 1̂-axis, which implies that,

ω3 = −θ̇, (22)

since the rotation due to positive ω3 decreases θ. The time derivatives of the unit vectors
are given by,

d1̂

dt
= ω × 1̂ = ω3 2̂ − ω2 3̂, = −θ̇ 2̂ − ω2 3̂, (23)

d2̂

dt
= ω × 2̂ = −ω3 1̂ + ω1 3̂ = θ̇ 1̂ + ω1 3̂, (24)

d3̂

dt
= ω × 3̂ = ω2 1̂ − ω1 2̂, (25)

The total angular momentum is,

L = Lω + Lμ + LEM =
mr2

4
(2ω1 1̂ + ω2 2̂ + ω3 3̂) +

μmec

e
1̂ + LEM. (26)

The torque equation for the angular momentum is,

dL

dt
=

dLω

dt
+

dLμ

dt
+

dLEM

dt

=
mr2

4

(
2ω̇1 1̂ + ω̇2 2̂ + ω̇3 3̂ + 2ω1

d1̂

dt
+ ω2

d2̂

dt
+ ω3

d3̂

dt

)
+

μmec

e

d1̂

dt
+

dLEM

dt

=
mr2

4

(
2ω̇1 1̂ + (ω̇2 − ω1θ̇) 2̂ − (θ̈ + ω1ω2) 3̂

)
+

μmec

e
(θ̇ 2̂ − ω2 3̂) +

dLEM

dt
= μ × B = −μB sin θ 3̂. (27)

We could cast this as an equation of motion for the “mechanical” angular momentum by the
rearrangement,

dLω

dt
=

mr2

4

(
2ω̇1 1̂ + (ω̇2 − ω1θ̇) 2̂ − (θ̈ + ω1ω2) 3̂

)
= −μB sin θ 3̂ − μmec

e
(θ̇ 2̂ − ω2 3̂) − dLEM

dt
. (28)

The last term of eq. (28) could be regarded as the reaction to the radiation of angular
momentum.

If, as in sec. 2.1, we neglect the last two terms of eq. (28), then eq. (28) tells us that,

ω̇1 = 0, ω̇2 − ω1θ̇ = 0, ω1ω2 + θ̈ =
4μB sin θ

mr2
(Lω � Lμ, LEM). (29)
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For steady precession, θ̇ = −ω3 = 0, so ω1 and ω2 are constant according to the first and
second of eq. (29). The total angular velocity ω lies in the 1̂-2̂ plane, and is parallel to B
for steady precession. Then, since B makes angle θ to the 1̂-axis by definition, ω1 = ω cos θ,
ω2 = ω sin θ, and the third of eq. (29) becomes,

ω2 =
4μB

mr2 cos θ
(Lω � Lμ, LEM), (30)

as previously found in eq. (7).
While steady precession cannot occur, in general, with the inclusion the last term of

eq. (28), we might estimate θ̇ from the 2̂-component of this equation (still neglecting Lμ) as,

mr2ω1

4
θ̇ =

mr2ω sin θ

4
θ̇ ≈ dLEM

dt

∣∣∣∣
2

=
2

3c3
[μ̇ × μ̈]2 =

dU

dt

ω2

ω2
≈ 2μ2ω3 cos θ sin2 θ

3c3
, (31)

using eq. (75.7) of [2].3 Then, supposing the motion to be approximately steady preces-
sion, we use eq. (30) in eq. (31), and ignore the sines and cosines, to estimate that the
(nonexponential) radiation damping through angle Δθ ≈ 1 takes time Δt related by,

θ̇ ≈ Δθ

Δt
≈ − 32μ4B2

3m2r4c3
, Δt ≈ 3m2r4c3

32μ4B2
=

3ρ2r4c3

32M4Vol2B2
≈ 3 × 1015 s ≈ 108 yr, (32)

for ρ = 7 g/cm3, r = 1 cm, Vol = 0.1 cm3, magnetization density M = 103 cgs units and
B = 3000 gauss (i.e., for a field such that the magnet is not stressed beyond its breaking
strength by its rotation).

This estimate of the damping time (for Lμ � Lω) scales as 1/μ4B2, in contrast to the
estimate (20) which scales as 1/μB3 (for Lω � Lμ, i.e., for very weak fields).4
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μmec

e
θ̇ =

dLEM

dt

∣∣∣∣
2

, θ̇ =
2eμB3 sin3 θ

3m4
ec

7
, (33)

using eqs. (15) and (31). This has essentially the same form as eq. (19), so an estimate of the damping time
Δt based on radiation of angular momentum is the same as that of eq. (20) based on radiation of energy.
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