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1 Problem

Deduce expressions for the electromagnetic vector potential A in an arbitrary gauge, where
the scalar potential V (x, t) has a specified form, via a gauge transformation from the poten-
tials in the Lorenz gauge [1].1

2 Solution

In the Hamiltonian dynamics of a charged particle, the Hamiltonian (and Lagrangian) H =
Umech + qV , where Umech is the “mechanical” energy of the particle, q is its electric charge,
and V is the “external” electromagnetic scalar potential in some gauge. Yet, the equations
of motion deduced from this Hamiltonian do not depend on the choice of gauge,2 so we are
free to use whatever gauge is convenient.

2.1 Gauge Transformations

We first review the notion of gauge transformations in classical electrodynamics.3 We con-
sider microscopic electrodynamics, and work in Gaussian units.

In electrostatics, Coulomb’s law can be written as,

E(x) =

∫
ρ(x′) r
r3

dVol′ = −∇V, where V =

∫
ρ(x′)
r

dVol′ (1)

ρ is the volume density of electric charge, and r = x − x′.
Faraday discovered (as later interpreted by Maxwell) that,4

∇ × E = −1

c

∂B

∂t
, (2)

1For an illustration of such expressions for a Hertzian (point) oscillating dipole, see [2].
2See, for example, sec. 2.1 of [3].
3For historical surveys, see [4] and Appendix A of [5].
4Faraday’s law, eq. (2), implies that the condition ∇ × E = 0 of electrostatics (where E is indepen-

dent of time) requires that the magnetic field B also be independent of time. That is, electrostatics and
magnetostatics are equivalent (as reinforced by the 4th Maxwell equation (9)).
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where c is the speed of light in vacuum, which implies that time-dependent magnetic fields B
are associated with additional electric fields beyond those deducible from the scalar potential
V . The nonexistence (so far as we know) of magnetic charges (Gilbertian monopoles) implies
that,

∇ · B = 0, (3)

and hence that the magnetic field can be related to a vector potential A by,

B = ∇ × A. (4)

Using eq. (4) in (2), we can write,

∇ ×
(
E +

1

c

∂A

∂t

)
= 0, (5)

which implies that E + (1/c)∂A/∂t can be related to a scalar potential V as −∇V , i.e.,

E = −∇V − 1

c

∂A

∂t
. (6)

Then, using eq. (6) in the Maxwell equation,

∇ · E = 4πρ (7)

leads to,

∇2V +
1

c

∂

∂t
∇ · A = −4πρ. (8)

Similarly, using eqs. (4) and (6) in the Maxwell equation,

∇ ×B =
4π

c
J +

1

c

∂E

∂t
, (9)

where J is the volume density of electrical current, leads to,

∇2A− 1

c2
∂2A

∂t2
= −4π

c
J + ∇

(
∇ · A +

1

c

∂V

∂t

)
. (10)

The differential equations (8) and (10) do not uniquely determine the potentials V and
A. As perhaps first clearly noted by Lorentz [6, 7],5 if V0, A0 are valid electromagnetic
potentials, then so are,

V = V0 − 1

c

∂χ

∂t
, A = A0 + ∇χ, (11)

where χ is an arbitrary scalar function, now called the gauge-transformation function. That
is, eqs. (4) and (6) give the same values for the electromagnetic fields B and E for either the
potentials V , A or V0, A0.

5A transformation A′ = A+∇χ of the vector potential was discussed by W. Thomson (1850) in sec. 82
of [8], without consideration of the electric field/potential. In sec. 98 of [9], Maxwell noted that if potentials
V0, A0 do not obey ∇ · A0 = 0, then the potentials V and A of eq. (11) [Maxwell’s eqs. (74) and(77)]
obey ∇ · A = 0 (Coulomb gauge) if ∇2χ = ∇ · A0, which he thereafter considered to be the proper type of
potentials.
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2.2 From Lorenz-Gauge Potentials to Those in Any Other Gauge

As deduced by Lorenz in 1867 [1],

V (L)(r, t) =

∫
ρ(r′, t′ = t− |r − r′| /c)

|r − r′| dVol′ (Lorenz), (12)

A(L)(r, t) =

∫
J(r′, t′ = t− |r − r′| /c)

c |r − r′| dVol′ (Lorenz), (13)

are formal expressions for the (retarded) potentials in what is now called the Lorenz gauge,
for which the so-called gauge condition is,

∇ · A(L) = −1

c

∂V (L)

∂t
(Lorenz). (14)

Another set of potentials can be defined by the gauge condition that the scalar potential
V (x, t) is a specified, but arbitrary scalar function.6 Then, we can formally integrate the
first of eq. (11) for V0 = V (L) to write the gauge-transformation function as,7,8

χ(x, t) = c

∫ t

−∞

{
V (L)(x, t′) − V (x, t′)

}
dt′. (15)

Hence, a formal expression for the vector potential in the new gauge follows from the second
of eq. (11),9

A(r, t) = A(L) + ∇χ = A(L)(r, t) + c∇
∫ t

−∞

{
V (L)(r, t′) − V (r, t′)

}
dt′

= A(L)(r, t)− c

∫ t

−∞

{
1

c

∂A(L)

∂t
− 1

c

∂A(L)

∂t
−∇V (L)(r, t′) + ∇V (r, t′)

}
dt′

= A(L)(r,−∞)− c

∫ t

−∞
{E(r, t′) + ∇V (r, t′)} dt′. (16)

6The potentials associated with given E and B fields, and subject to a particular gauge condition, are
not unique. For example, one can add constant terms to V and A with no change to E or B, and the
gauge remains the same (except for the Gibbs gauge, sec. 23.3 below, in which V = 0 always). In case
of potentials in the Lorenz gauge, if the (restricted) gauge-transformation function χ(x, t) obeys the wave
equation ∇2χ = ∂2χ/∂(ct)2, then the new potentials A′(L) = A(L) + ∇χ and V ′(L) = V (L) − ∂χ/∂(ct) obey
∇ · A′(L) = ∇ · A(L) + ∇2χ = −∂V (L)/∂(ct) − ∂/∂(ct)[−∂χ/∂(ct)] = −∂V ′(L)/∂(ct), and so are also in the
Lorenz gauge.

Thus, the specification of a gauge condition is not, in general, sufficient to determine the potentials
uniquely. For the latter, one could also specify boundary conditions, such as the vector potential being
normal, or tangential, to some bounding surface, as discussed, for example, in [11]. It is noteworthy that
the retarded vector potential (13) will not generally satisfy such boundary conditions, so one may be led to
Lorenz-gauge potentials which are not the retarded potentials. See, for example, sec. 2.2.3 of [12].

7Equation (15) is a slight generalization of the procedure given in sec. IIIA of [13]. The arguments there
depend in part on eq. (2.10), which relations are more obvious if it is understood that eq. (2.9) is applied to
Lorenz-gauge potentials, and that the function Ψ also serves as the gauge-transformation function from the
Coulomb gauge to the Lorenz gauge.

8May 28, 2024. Additional discussion of eq. (15) is given in [14].
9May 17, 2024. A different derivation of eq. (16) is given in Sec. 2 of [15].
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2.2.1 Propagation of the Fields and Potentials

The Lorenz-gauge potentials (12)-(13) can be said to propagate with speed c,10 with the
consequence that the fields B and E derived from them via eqs. (4) and (6) can also be said
to propagate with speed c (as expected from Maxwell’s electrodynamics [10]).11

When using eq. (16) to compute the magnetic field from the vector potential in an
arbitrary gauge, we have that B = ∇ × A = ∇ × A(L). Similarly, the electric field, as
computed from the potentials V and A in an arbitrary gauge, is,

E = −∇V − 1

c

∂A

∂t
= −∇V − 1

c

∂A(L)

∂t
− ∇V (L) + ∇V = −∇V (L) − 1

c

∂A(L)

∂t
. (17)

which reaffirms that B and E propagate with speed c. While the general scalar potential
V can propagate arbitrarily, when considering the electric field E according to eq. (6), this
arbitrary behavior is canceled by that of the time derivative of the third term in (the first
line of) eq. (16) for the general vector potential A.12

2.3 Examples

While the expression (16) applies for “any” gauge, to use it we must first know the scalar
potential V in that gauge, which is not obvious in general. That is, the prescription (16) is
a “solution looking for a problem”.

The present general result (16) can be contrasted with prescriptions for transformations
from the Lorenz-gauge potentials to those in several other gauges as given in [13].

2.3.1 Velocity Gauge

One application of eq. (16) is to the so-called velocity gauge in which the scalar potential is
assumed to propagate with arbitrary speed v rather than c.13,14 The velocity-gauge condition
is,

∇ · A(v) = − c

v2

∂V (v)

∂t
(velocity gauge). (18)

With this, eqs. (8) and (10) become,

∇2V (v) − 1

v2

∂2V (v)

∂t2
= −4πρ, (19)

10Strictly, this claim holds only for plane, cylindrical and spherical waves, while superpositions of such
waves can propagate at any speed. See, for example, [16].

11General expressions for B and E deduced from the Lorenz-gauge potentials in terms of retarded quanti-
ties that propagate with speed c are given in eqs. (14-34) and (14-42) of [17]. See also [18], where it is shown
in the Appendix that the general expressions for B and E can also be deduced from Maxwell’s equations
without use of potentials.

12Such a cancelation for the Coulomb-gauge potentials has been noted in [19, 20, 21, 22].
13The velocity gauge was initially called the α-Lorentz gauge in [23, 24]. See also [25].
In essence, the velocity gauge was used in 1870 by Helmholtz, eq. (3a), p. 80 of [26], while he considered

other vector potentials in eq. (1a), p. 76. See also [27, 28].
14Nonphysical waves of the gravitational potential with arbitrary velocity were called gauge waves by

Feynman on p. 52 of [29].
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∇2A(v) − 1

c2
∂2A(v)

∂t2
= −4π

c

[
J +

1

4π

(
c2

v2
− 1

)
∇∂V (v)

∂t

]
. (20)

and a formal solution of the scalar potential in the velocity gauge is,

V (v)(r, t) =

∫
ρ(r′, t′ = t− |r − r′| /v)

|r − r′| dVol′, (21)

If the scalar potential V (v) and the vector potential A(L) are known, then eq. (16) can be
used to deduce the vector potential A(v), rather than by solving eq. (20).

The velocity-gauge potentials are not unique (for a given set of charges and currents), in
that use of a restricted gauge-transformation function χ(x, t) which obeys ∇2χ = ∂2χ/∂(vt)2

leads to new potentials that also satisfy the condition (18). See sec. IIIC of [25].

2.3.2 Coulomb Gauge

A special case of a velocity gauge is the famous Coulomb gauge, in which,

∇ · A(C) = 0 (Coulomb), (22)

corresponding to v = ∞ in eq. (21),15

V (C)(r, t) =

∫
ρ(r′, t)
|r − r′| dVol′ (Coulomb). (23)

The use of eq. (16) to compute the vector potential in the Coulomb gauge can be simpler
than the classic prescription,16

A(C)(r, t) =

∫
[Jt]

c |r − r′| dVol′, (24)

where the transverse current density is given by,

Jt(r, t) =
1

4π
∇ × ∇ ×

∫
J(r′, t)
c |r − r′| dVol′ = J(r, t) − 1

4π
∇∂V (C)(r, t)

∂t
, (25)

where the second form follows from eq. (20).
The Coulomb-gauge potentials are not unique for a given set of charges and currents, as

use of a restricted gauge function χ which obeys ∇2χ = 0 everywhere leads to alternative
potentials A′(C) = A(C) + ∇χ and V ′(L) = V (L) − ∂χ/∂(ct) that obey ∇ ·A′(c) = ∇ ·A(C) +
∇2χ = 0, and so are also in the Coulomb gauge.

See [31] for examples of several Coulomb-gauge potentials of a infinite, static solenoid.

15The potentials used by Maxwell were always in the Coulomb gauge, as in sec. 617 of [10].
In eq. (68), p. 498 of [9], Maxwell nearly discovered the Lorenz gauge, which reads kJ + 4πμ dΨ/dt = 0

in the notation there. Instead, he argued after eq. (79) that J (= ∇ ·A) is either zero or constant for wave
propagation. He was not bothered by the implication of eq. (79) that in this case the scalar potential ϕ
“propagates” instantaneously, perhaps because of the great success that his assumptions about the potentials
lead to propagation of the electric and magnetic fields at lightspeed

√
k/4πμ.

16See, for example, sec. 6.3 of [30].
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For an example of the vector potential in the Coulomb gauge obtained by transforming
the vector potential from the Lorenz gauge via eq. (16), see sec. 2.4 of [2]. For the case of a
uniformly moving charge, see [32, 33]. The case of a charge that is rapidly accelerated from
rest to uniform motion is discussed in [34]. For an interesting dynamic example where it is
simpler to use the Coulomb gauge than the Lorenz gauge, see [35].

2.3.3 Gibbs Gauge

Another case where the prescription (16) readily applies is the gauge where the scalar po-
tential is defined to be zero, V (G) = 0, such that E = −(1/c)∂A(G)/∂t, as first proposed by
Gibbs [36, 37].17,18,19

Since the Gibbs-gauge vector potential is an integral of the electric field, A(G)(t) =
−c ∫ t

t0
E(t′) dt′, this potential propagates at speed c. However, it differs from the Lorenz-

gauge vector potential. Since ∇ · E = 4πρ = −(1/c)∂∇ · A(G)/∂t, the Gibbs-gauge vector
potential obeys ∇·A(G) = 0 away from charged particles (whereas the Coulomb-gauge vector
potential obeys ∇ · A(C) = 0 everywhere).20

According to eq. (16), the vector potential in the Gibbs gauge is,

A(G)(r, t) = A(L)(r, t) + c∇
∫ t

−∞
V (L)(r, t′) dt′, (26)

so that the vector potential in any other gauge, where the scalar potential is V , can be
written as,

A(r, t) = A(G) − c∇
∫ t

−∞
V (r, t′) dt′. (27)

That is, if the vector potential in Gibbs gauge in known, this provides an even simpler
prescription than eq. (16) for the vector potential in another gauge.

For an example of the vector potential in the Gibbs gauge, which can also be obtained
by transforming the vector potential from the Lorenz gauge via eq. (16), see sec. 2.5 of [2].

2.3.4 Static-Voltage Gauge

A variant of the Gibbs gauge is that the scalar potential is not zero, but rather is the
instantaneous Coulomb potential at some arbitrary time t0,

V (SV)(r, t) = V (C)(r, t0) =

∫
ρ(r′, t0)
|r − r′| dVol′. (28)

17Apparently the Gibbs gauge is also called the Hamiltonian, or temporal, or Weyl, gauge, as mentioned
in sec. VIII of [13]. That is, the Gibbs gauge is handy in examples where the electric field is known, and the
vector potential is needed for use in the Hamiltonian of the system, expressed in terms of canonical momenta
of charges q as pcanonical = pmech + qA/c.

18The Gibbs gauge, where V = 0, was considered, but not so named, in [38]. See also [39], where if one
takes the “mechanical” potential energy U of electric charge q to be qV , then the condition that V = −U/q
requires that V = 0.

19If the gauge-transformation function χ(x, t) obeys ∂2χ/∂t2 = 0, then potentials in the Gibbs gauge
transform to others in this gauge.

20The distinction between ∇ · A in the Coulomb and Gibbs gauges is often slight, which may be why
Gibbs thought that his new gauge was the Coulomb gauge used by Maxwell. See also [40].
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This is the static-voltage gauge [41], called the Coulomb-static gauge in [42].
From eq. (27), we see that the vector potential in the static-voltage gauge differs only

slightly from that in the Gibbs gauge,

A(SV)(r, t) = A(G)(r, t)− ct∇V (C)(r, t0) (29)

2.3.5 Kirchhoff Gauge

The earliest statement of a gauge condition appears to have been made by Kirchhoff in 1857
[43, 44], when he specified that,

∇ · A(K) =
1

c

∂V (K)

∂t
(Kirchhoff). (30)

Using this gauge condition in the general wave equation (8) for the scalar potential, we have,

∇2V (K) +
1

c2
∂2V (K)

∂t2
= −4πρ, (31)

such that the Kirchhoff-gauge scalar potential can be said to propagate with imaginary
speed, vK = ic. In this sense, the Kirchhoff gauge is a special case of the velocity gauge of
sec. 2.3.1.

The scalar potential in the Kirchhoff gauge can be written as a “retarded” potential
which speed of propagation ic. Recalling eq. (12), we have,

V (K)(r, t) =

∫
ρ(r′, t′ = t− |r − r′| /ic)

|r− r′| dVol′ (Kirchhoff), (32)

For further discussion of the Kirchhoff gauge, see [45].

2.3.6 Poincaré Gauge

In cases where the fields E and B are known, we can compute the potentials in the so-called
Poincaré gauge (see sec. 9A of [13] and [46, 47, 48]),21,22

V (P)(r, t) = −r ·
∫ 1

0

duE(ur, t), A(P)(r, t) = −r ×
∫ 1

0

u duB(ur, t) (Poincaré). (33)

These forms are remarkable in that they depend on the instantaneous value of the fields only
along a line between the origin and the point of observation.23,24

21The Poincaré gauge is also called the multipolar gauge [49, 50].
22For a point charge q at rest at the origin, E = q r̂/r2, B = 0, V (P) = −r · ∫ 1

0
du qr̂/u2r2 = q/r−∞, and

A(P) = 0. Here, the Poincaré scalar potential V (P) is equivalent to the Coulomb potential V (C) = q/r, but
with an infinite offset. Of course, q/r + C is also a Coulomb potential of the charge q for any constant C.

23The potentials in the Poincaré gauge depend on the choice of origin. If the origin is inside the region of
electromagnetic fields, then the Poincaré potentials are nonzero throughout all space. If the origin is to one
side of the region of electromagnetic fields, then the Poincaré potentials are nonzero only inside that region,
and in the region on the “other side” from the origin.

24We transcribe Appendices C and D of [50] to verify that E and B indeed follow from the Poincaré
potentials (33).

− ∇V (P) − 1
c

∂A(P)

∂t
=

∫ 1

0

du

{
∇[r · E(ur, t)] + r × u

c

∂B(ur, t)
∂t

}
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The Poincaré-gauge condition can be stated as,25

r · A(P) = 0 (Poincaré). (36)

If the scalar potential in the Poincaré gauge can be computed, it may then be simpler to
deduce the vector potential in this gauge via eq. (16) than via eq. (33).

See [53] for an application of the spirit of the Poincaré potentials to a relation between a
physical charge and current densities ρ and J and effective polarization and magnetization
densities P and M, such that ρ = −∇ · P and J = c∇ × M + ∂P/∂t.

See [54] for examples of potentials of an infinite solenoid, and of a toroidal magnet, in
the Poincaré gauge.

2.3.7 Length (Electric-Dipole) Gauge

We now focus on an example of particular interest in quantum analysis: a hydrogen atom
interacting with a plane electromagnetic wave of optical frequency, or lower.26 Then, the
wavelength of the electromagnetic wave is large compared to the size of the atom, and it is a
good approximation to think of the atom as an electric dipole whose moment has magnitude
d = er, where r is the distance of the electron from the proton.

The rate of classical radiation by an oscillating electric dipole d scales as d2ω2, as first
deduced by Hertz [56]. Since the quantum rate goes as the square of a matrix element of
a relevant operator, we might expect that the quantum description of the interaction of an
electron with an electromagnetic wave would involve a term in the Hamiltonian of the form
−d ·Ewave, this being the interaction energy of an electric dipole d in an external wave field.
However, the Hamiltonian (50) of Appendix A does not obviously contain such a term,

H =
p2

mech

2m
+ eV =

1

2m

(
p− eA

c

)2

+ eV =
p2

2m
+ eV − e

2mc
(p · A + A · p) +

e2A2

2mc2

=
∫ 1

0

du {∇[r · E(ur, t)]− r× [∇ ×E(ur, t)]}

=
∫ 1

0

du {(r · ∇)E(ur, t) + [E(ur, t) · ∇]r + E(ur, t)× (∇ × r)}

=
∫ 1

0

du

{
u
d(uxi)
du

∂E(ur, t)
∂(uxi)

+ E(ur, t)
}

=
∫ 1

0

du
d

du
uE(ur, t) = E(r, t), (34)

∇ ×A(P) = −
∫ 1

0

u du∇× [r× B(ur, t)]

= −
∫ 1

0

u du {r[∇ · B(ur, t)]−B(ur, t)[∇ · r] + [B(ur, t) · ∇]r− (r ·∇)B(ur, t)}

=
∫ 1

0

u du

{
2B(ur, t) + uxi

∂B(ur, t)
∂(uxi)

}
=

∫ 1

0

u du

{
1
u

d

du
u2B(ur, t)

}
= B(r, t). (35)

25If we write A(P)(r) =
∫

A(P)
k eik·r d3k/(2π)3, then ∇k · A(P)

k =
∫ ∇k · A(P)(r) e−ik·r d3k

= −i ∫ r · A(P)(r) e−ik·r d3k = 0. That is, the Poincaré gauge is the Coulomb gauge in (reciprocal) k-space.
The relativistic version of the Poincaré gauge, with xµA

µ = 0, is called the Fock [51] or Schwinger [52]
gauge, and is the Lorenz gauge in k-space.

26These remarks follow sec. AXIII of [55].
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=
p2

2m
+ eV − e

mc
A · p− ie�

2mc
(∇ · A) +

e2A2

2mc2
, (37)

where we now consider the Hamiltonian to be a quantum operator, with the canonical
momentum p replaced by −i�∇.

We could, of course, simply proceed with the Hamiltonian (37), after choosing a gauge.
For this, it would seem obvious to use a gauge in which the static electric field of the proton
is related to the scalar potential V0 = e/r (with the corresponding vector potential A0 = 0),
and write the quantum Hamiltonian (37) as,

H = H0 + Hint, (38)

with “unperturbed” Hamiltonian,

H0 =
p2

2m
+ eV0, (39)

and the interaction Hamiltonian,

Hint = eVwave − e

mc
Awave · p− ie�

2mc
(∇ · Awave) +

e2A2
wave

2mc2
, (40)

that is to be regarded as a perturbation associated with the plane electromagnetic wave, say,

Ewave = E0 cos(kz − ωt) x̂, (41)

As previously remarked, the scalar potential V0 = e/r is consistent with any velocity
gauge (sec. 2.3.1). Thus, we might use the Lorenz gauge for the interaction Hamiltonian,
noting that the plane wave (41) can be related to potentials in the Lorenz gauge,

V (L)
wave = 0, A(L)

wave =
E0

k
sin(kz − ωt) x̂. (42)

The vector potential (42) obeys ∇(L) · Awave = 0,27 such that if the field strength is not too
large,28 the interaction Hamiltonian in the Lorenz gauge simplifies to,

H(L)
int ≈ − e

mc
A(L)

wave · p. (43)

Matrix elements for the interaction Hamiltonian (43) can then be computed with the usual
wavefunctions of an unperturbed hydrogen-atom (based on the scalar potential V0).

However, we might prefer to use a different gauge, in which the interaction Hamiltonian
has the form −d · Ewave. For this, we make a gauge transformation from the Lorenz gauge
to the length gauge, using the transformation function,

χ(L→l) =
xE0

k
sinωt. (44)

27We could also say that the potentials (42) are in the Coulomb gauge (and also in the Gibbs gauge),
although the vector potential propagates at speed c, whereas a time-dependent vector potential in the
Coulomb gauge typically has a term that propagates instantaneously.

28By “not too large”, we mean that the last term in eq. (40) is small compared to mc2, i.e., eA(L)/mc2 =
eE/mωc� 1. This is the now-standard criterion for a “weak” laser field.
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The potentials of the wave in the length gauge are, according to eq. (11),

V (l)
wave = V (L)

wave −
1

c

∂χ(L→l)

∂t
= −xE0 cosωt (length gauge), (45)

A(l)
wave = A(L)

wave + ∇χ(L→l) =
xE0

k
[sin(kz − ωt) + sinωt] x̂ (length gauge). (46)

For long wavelengths, kz � 1 for the atomic electron, so we obtain the approximate
potentials in the length gauge,29

V (l)
wave ≈ −xE0 cos(kz − ωt) = −r · Ewave, A(l)

wave ≈
xE0

k
[sin(−ωt) + sinωt] x̂ = 0. (47)

and the interaction Hamiltonian (40) in the length gauge is (for weak wave fields),

H(l)
int ≈ eVwave = −er · Ewave = −d · Ewave (kr � 1), (48)

as desired by those who feel that the interaction Hamiltonian should be based on the classical
energy −d · E of an electric dipole d in an external electric field E.30

Matrix element of operators in the length gauge should not be taken using the unper-
turbed wavefunctions in the Lorenz gauge. Rather, we must first transform those wavefunc-
tions into the length gauge according to eq. (59),

ψ(l) = e−ieχ(L→l)/�c ψ(L) = e−iexE0 sin(ωt)/�ω ψ(L). (49)

However, the interaction-Hamiltonian operator (48) in the length gauge does not involve
any derivatives, so its matrix elements are the same whether one uses wavefunctions in
the length gauge or (nominally incorrectly) the usual hydrogen-atom wavefunctions (in the
Lorenz gauge).

There seems to have been some controversy about the choice of gauge for quantum
analyses of atom-wave interactions, particularly after Lamb’s work [58] on the eponymous
shift. Insufficient care led to some results differing when computed in different gauges, and
specious claims that one gauge is more “correct” than another. Some of this history can be
traced in [23, 49, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76].

Appendix A: Gauge Invariance and Quantum Mechanics

Quantum mechanics can be considered as an extension of Hamiltonian dynamics, starting
with Planck’s introduction of h as the quantum of action S =

∫ L dt in eq. 41 of [77].31

29The approximate forms (47) for the potentials do not hold in general, but only for a long-wavelength
plane wave. For example, the potential of a point charge q at the origin is q/r = r ·E (and not −r ·E) if the
corresponding vector potential is zero. That is, the length-gauge potentials (47) cannot be used to describe
the interaction with the proton in the unperturbed Hamiltonian (39).

Also, the approximation that A(l)
wave = 0 means that the analysis ignores possible effects of the magnetic

field of the wave, such as its interaction with the magnetic moment of the electron. If the latter is of interest,
the length-gauge approximation should not be used.

30The above argument (although not the name length gauge) may have originated with Göppert-Mayer
in her doctoral thesis [57].

31Planck’s relation that U = nhν for the energy of a quantum harmonic oscillator came a year later [78].
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The Hamiltonian function H played little role in the early development of quantum theory.
The classical, nonrelativistic Hamiltonian for a spinless electric charge e with mass m in an
electromagnetic field described by potentials V and A seems to have been first stated by
Schwarzschild [79] (as recounted in sec. IID of [4]),

H =
p2

mech

2m
+ eV =

1

2m

(
p− eA

c

)2

+ eV, (50)

where p is the canonical momentum (and the mechanical momentum is pmech = mv =
p − eA/c).32 Schwarzschild did not mention gauge invariance (a term invented by Weyl
in 1928 [81]; in English on p. 330 of [82]), but he did show that the equations of motion
deduced from his Lagrangian/Hamiltonian have the form ma = e(E = v/c × B), which is
gauge invariant.33

In 1916, Epstein [83] and Schwarzschild [84] gave analyses of the Stark effect starting
from the Hamilton-Jacobi equation [86, 87, 88, 89],

H

(
qi,

∂S

∂qi

)
= H(qi, pi) = −∂S

∂t
→ E when S(qi, t) =

∑
i

piqi − Et, (51)

where the relation H = E (energy) holds when the Hamiltonian is independent of time t.
In 1926, Schrödinger argued that a quantum version of the (nonrelativistic) Hamilton-

Jacobi equation can by obtained the substitutions,

S → −i� lnψ, ⇒ pi =
∂S

∂qi
=

−i�
ψ

∂ψ

∂qi
, piψ → −i� ∂

∂qi
ψ, p → −i�∇. (52)

where ψ is a scalar wavefunction and pi is the canonical momentum ∂L/∂q̇i associated
with coordinate qi. For a particle of mass m and electric charge e in a static electric field
E = −∇V , its classical Hamiltonian H is,

H =
p2

2m
+ eV, (53)

and we arrive at Schrödinger’s equation via eq. (52),

−�
2

2m
∇2 + eV =

i�

ψ

∂ψ

∂t
= E ,

(−�
2

2m
∇2 + eV

)
ψ = i�

∂ψ

∂t
= Eψ, (54)

where the terms in energy E apply only if the system has a definite total energy.34

32Strictly, Schwarzschild discussed the interaction Lagrangian, Lint = eV − ev ·A/c, which together with
the free-particle Lagrangian, Lfree = mv2/2, leads to the Hamiltonian (50), as shown in sec. 16 of [80].

33Apparently, the first explicit discussion of the fact that while the Hamiltonian/Lagrangian of an electric
charge in an electromagnetic field is gauge dependent, its equation of motion is gauge invariant, was given
by Landau in sec. 16 of the 1941 edition of [80] (sec. 18 of later editions).

34While the term in ∂ψ/∂t is implicit in Schrödinger’s first quantum paper [90], he omitted it. And in
his fifth paper of 1926 [91] he seemed unsure of the sign of this term.

The sign appears correctly in eq. (2) of Dirac’s first paper to use Schödinger’s formalism [92].
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It no doubt seemed obvious in early 1926 to regard the (static) scalar potential V as the
Coulomb potential e/r of a proton in case of a hydrogen atom, but this choice implicitly
assumes use of a velocity gauge (sec. 2.3.1 above), such as the Coulomb or Lorenz gauges.

The first consideration of the quantum dynamics of an electric charge in a general, time-
dependent electromagnetic field seems to have been by Schrödinger in sec. 6 of [91], where he
considered a relativistic wave equation for a (spinless) electron whose Hamiltonian involves
both a scalar potential V ,35 and a vector potential A, tacitly in the Coulomb gauge.36 Here,
we content ourselves with a nonrelativistic version, using the Hamiltonian (50). and follow
Schrödinger’s prescription (52) to find,

i�
∂ψ

∂t
=

[
1

2m

(
−i�∇− eA

c

)2

+ eV

]
ψ

= − �
2

2m
∇2ψ +

ie�

2mc
[∇ · (Aψ) + A · ∇ψ] +

e2A2

2mc2
ψ + eV ψ

= − �
2

2m
∇2ψ +

ie�

mc
A · ∇ψ +

ie�

2mc
(∇ · A)ψ +

e2A2

2mc2
ψ + eV ψ. (55)

In principle, we should be able to use any gauge for the potentials A and V in eq. (55),
and the physical predictions of the quantum analysis should be the same.

A first step towards demonstrating the gauge invariance of quantum analyses was made
by Fock (1926) [94]. See also [95] and p. 206 of [96]. In somewhat more contemporary
notation, Fock noted that eq. (55) for an electric charge e of mass m in electromagnetic
fields described by potentials Aμ = (V,A) can be written as,37

(−i�D)2

2m
ψ = i�D0 ψ, (56)

using the “altered” (covariant) derivative,

Dμ = ∂μ − ieAμ

�c
, ∂μ =

(
∂

∂t
,∇

)
. (57)

Then, the form of eq. (56) is gauge invariant only if a gauge transformation of the potentials,

Aμ(xν) → Aμ + ∂μχ, (58)

is accompanied by a phase change of the wavefunction,

ψ(xν) → e−ieχ/�c ψ, (59)

where the scalar gauge-transformation function χ is “arbitrary” (but differentiable).38

The further demonstration that quantum expectation values for wavefunctions which
obey eq. (56) are also gauge invariant can be found in sec. HIII of [55] (which may the only
demonstration of this in a “textbook”).

35Klein published slightly earlier [93] a relativistic wave equation for an electron interacting with only a
scalar potential.

36In eq. (36) of [91], the term in ∇ · A in the last line of our eq. (55) had been set to zero.
37Fock actually discussed the relativistic case, referencing Klein [93], but not Schrödinger [91].
38On pp. 330-331 of [82], Weyl inverted Fock’s argument (without referencing him), concluding that for
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Appendix B: Hydrogen-Atom Wavefunctions in a Gauge

where the Hamiltonian is Time Dependent

In [72, 75] it is argued that gauges are “unphysical” if the Hamiltonian for a system in that
gauge is time dependent, while it has no time dependence is some other gauge.39 This view
goes against the notion of gauge invariance, so we illustrate here how one can use a gauge in
which the Hamiltonian is time dependent to find the quantum wavefunctions of a hydrogen
atom.

First, we recall that in a velocity gauge, including the Coulomb and Lorenz gauges, the
classical Hamiltonian H of a nonrelativistic electron of charge e and mass m and a proton
of charge q = −e, that is approximated to be at rest at the origin, can be written as,

H =
pmech

2m
+ eV =

(p− eA/c)2

2m
+ eV, (60)

where the electromagnetic potentials of the proton are,

A(v) = 0, V (v) =
q

r
. (61)

This Hamiltonian is independent of time, and equals the total energy E of the electron.40

The eigenstates ψ(v)
n of the quantum version H(v) = E(v) of this Hamiltonian were found by

Schrödinger [90] (who was not aware that he was working in a velocity gauge).
In the Gibbs gauge (sec. 2.3.3 above), the potentials are,

A(G) = −cqt
r2

r̂, V (G) = 0, (62)

so the time-dependent, quantum Hamiltonian H(G) obtained from eq. (60) equals only the
kinetic energy (operator) p2

mech/2m.
It is interesting to consider an “oddball” gauge in which the scalar potential is,

V (odd) = k
q

r
, (63)

for some real value of k. Then, according to sec. 2.2 above, we can make a gauge transforma-
tion from the Lorenz (velocity) gauge to the “oddball” gauge using a gauge-transformation

physics be invariant under a local phase change as in eq. (59), there must exist a 4-vector potential that
obeys eq. (58), and If our view is correct, then the electromagnetic field is a necessary accompaniment of
the matter-wave field.

The argument that local phase invariance of the quantum wavefunction requires a gauge theory was applied
by Yang and Mills [97] to a (nonviable) theory of pions interactions, by Weinberg [98] and Salam [99] to
the Standard Model (electroweak theory), and by Gross and Wilczek [100] and Politzer [101] to quantum
chromodynamics. It remains that gravity is not described by a gauge theory, since in such theories antimatter
has gauge anticharge, but antimatter does not have negative mass (see, for example, [102]).

39The electromagnetic potentials are not measurable in any gauge, so many people (including the authors)
regard the potentials as “unphysical” in any gauge.

40That this Hamiltonian equals the energy is not an illustration of Noether’s theorem [103], which formally
applies only for field theories. For example, a Hamiltonian that is independent of time can be given for a
damped harmonic oscillator, which does not have a conserved energy. See sec. 2.6 of [104], and also [105, 106].
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function,

χ(x, t) = c

∫ t

−∞

{
V (L)(x, t′) − V (odd)(x, t′)

}
dt′ = (1 − k)

cqt

r
, (64)

and the vector potential is,

A(odd) = A(L) + ∇χ = ∇χ = −χ r̂

r
= −(1 − k)

cgt

r2
r̂. (65)

While it is perhaps not straightforward to solve Schrödinger’s equation using the Hamil-
tonian (60) in the “oddball” gauge, we know from the general argument of Fock [94] (our
eq. (59)), that the energy eigenfunctions ψ(odd)

n in this gauge are related to the well-known
wavefunctions ψ(v)

n in a velocity gauge by,

ψ(odd)
n = e−ieχ/�c ψ(v)

n = e−(1−k)eqt/�cr ψ(v)
n . (66)

For completeness, we display the energy operator E(odd) such that,

E(odd)ψ(odd)
n = En ψ

(odd)
n , (67)

where En is the energy eigenvalue of wavefunction ψ(v)
n , i.e., E(v) ψ(v)

n = En ψ
(v)
n in a velocity

gauge, where E(v) = p2/2m + eq/r. For this, we note that the classical energy E of our
system is, in the “oddball” gauge,

E =

(
p

(odd)
mech

)2

2m
+
eq

r
=

(
p− eA(odd)/c

)2

2m
+ eV (odd) + (1 − k)

eq

r
= H(odd) + (1 − k)

eq

r

=

(
p− eA(odd)/c

)2

2m
+
eq

r
. (68)

Then, the energy operator E(odd) in the “oddball” gauge is the quantum version of eq. (68),

obtained by taking p = −i�∇, i.e., E(odd) =
(
p

(odd)
mech

)2

/2m + eq/r.

Now, in the quantum analysis,

p
(odd)
mech ψ

(odd) =
(
p− eAψ(odd)

n /c
)
ψ(odd) =

(−i�∇− eA(odd)/c
)
e−ieχ/�c ψ(v)

= −i�ψ(v) ∇e−ieχ/�c + e−ieχ/�c
(−i�∇− eA(odd)/c

)
ψ(v)

=
e

c
e−ieχ/�c ψ(v)∇χ+ e−ieχ/�c

(−i�∇− eA(odd)/c
)
ψ(v)

= e−ieχ/�c
(
eA(odd)ψ(v)/c

)
+ e−ieχ/�c

(−i�∇− eA(odd)/c
)
ψ(v)

= e−ieχ/�c (−i�∇)ψ(v) = e−ieχ/�c pψ(v) = e−ieχ/�c p
(v)
mech ψ

(v), (69)

and so,(
ψ(odd)

)∗
p

(odd)
mech ψ

(odd) =
(
ψ(v)

)∗
eieχ/�c e−ieχ/�c p

(v)
mech ψ

(v) =
(
ψ(v)

)∗
p

(v)
mech ψ

(v). (70)
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This illustrates that the expectation value of a physical operator, such as the mechanical
momentum pmech, is gauge invariant.41

Furthermore, p2
mech is a physical operator, with the implication that,

(
p

(odd)
mech

)2

ψ(odd) =
(
p− eAψ(odd)

n /c
)2

ψ(odd) = e−ieχ/�c
(
p

(v)
mech

)2

ψ(v) = e−ieχ/�c p2 ψ(v).(71)

Then,

E(odd)ψ(odd)
n =

(
p

(odd)
mech

)2

2m
ψ(odd)

n +
eq

r
ψ(odd)

n = e−ieχ/�c

(
p2

2m
+
eq

r

)
ψ(v)

n

= e−ieχ/�c E(v) ψ(v)
n = e−ieχ/�c En ψ

(v)
n = En ψ

(odd)
n , (72)

which confirms that the ψ(odd)
n are indeed the energy eigenstates in the “oddball” gauge.
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