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1 Problem

Can a golf ball roll into the cup, roll around on its vertical wall and pop back out?1

Consider a sphere of radius a that rolls without slipping inside a vertical cylinder of
radius b > a.

If Ω = φ̇ = angular velocity of the point of contact about the vertical, 1̂ points from
the center of the sphere to the point of contact, ẑ is vertical, and 2̂ = ẑ × 1̂, show that the
component equations of motion are,

ẑ : Ω̇ = 0, (1)

1̂ : a ω̇1 = Ωz, (2)

2̂ :
(
I + ma2

)
z̈ = −ma2g − Ia ω1 Ω. (3)

Show that z of the center of mass executes simple harmonic motion, and if at t = 0,
z = 0, ż = ż0, and ω1 = ω10, then,

z =
ma2g + Ia Ωω10

I Ω2
(cos αt − 1) +

ż0

α
sinαt, where α = Ω

√
I

I + ma2
. (4)

With what velocity and angular velocity must the ball arrive at the rim of the cup to fall
in and execute the above oscillatory motion, and possibly pop back out?

2 Solution

This problem is discussed in §421, p. 357 of E.A. Milne, Vectorial Mechanics (Metheun;
Interscience Publishers, 1948),
http://kirkmcd.princeton.edu/examples/mechanics/milne_mechanics.pdf

1This behavior is distinct from the possibility that the ball bounces off the flagpole in the hole, or the
plastic insert therein, as occurs from time to time.
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We consider a sphere, of mass m and radius a with moment of inertia I about its center,
that rolls without slipping on a fixed, vertical cylinder of radius b > a. We use a set of
principal axes (but not body axes) about the center of the sphere of radius a, where 1̂ points
outward along the horizontal line from the center of the spheres to the point of contact with
the cylinder. Axis 3̂ is vertical (parallel to ẑ), and axis 2̂ = ẑ × 1̂ is also horizontal).

The center of the sphere of radius a is at position r = (b− a) 1̂ + z ẑ with respect to the
origin at the bottom center of the cylindere. Then, the velocity of the center of the sphere
of radius a is,

v =
dr

dt
= (b − a)

d1̂

dt
+ ż ẑ . (5)

The (nonholonomic) constraint of rolling without slipping is that the point of contact of
sphere with the cylinder is instantaneously at rest in the lab frame,

vcontact = 0 = v + ω × a = (b − a)
d1̂

dt
+ ż ẑ + aω × 1̂, (6)

where ω is the total angular velocity of the sphere in the lab frame, and a = a 1̂ is the vector
from the center of the sphere of radius a to the point of contact.

The force and torque equations of motion for (the center of) the sphere of radius a are,

m
dv

dt
= m(b− a)

d21̂

dt2
+ mz̈ ẑ = F− mg ẑ, F = m(b − a)

d21̂

dt2
+ m(g + z̈) ẑ, (7)

dL

dt
= I

dω

dt
= τ = a ×F = ma(b− a) 1̂ × d21̂

dt2
− m(g + z̈)a 2̂, (8)

where I is the moment of inertia of the sphere about its center.
We define Ω = Ω ẑ as the angular velocity of the center of the sphere (and also of the

point of contact, as well as of the triad 1̂-2̂-3̂) about the vertical axis, such that,

d1̂

dt
= Ω × 1 = Ω 2̂,

d21̂

dt
= Ω̇ 2̂ + ΩΩ × 2̂ = −Ω21̂ + Ω̇2̂, 1̂ × d21̂

dt
= Ω̇ ẑ. (9)

The velocity (5) of the center of the sphere can now be written as,

v = −Ω(b− a) 2̂ + ż ẑ , (10)

so the 2̂-component of the total angular velocity ω of the sphere about its center (and also
that about the point of contact) is vz/a = ż/a, and the ẑ-component is v2/a = −(b − a)/a.
Thus,

ω = ω1 1̂ +
ż

a
2̂ − Ω

b − a

a
ẑ,

dω

dt
= ω̇1 1̂ + Ωω1 2̂ +

z̈

a
2̂ − Ωż

a
1̂ − Ω̇

b − a

a
ẑ, (11)
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With these, the equation of motion (8) becomes,

I

[(
ω̇1 − Ωż

a

)
1̂ +

(
Ωω1 +

z̈

a

)
2̂ − Ω̇

b− a

a
ẑ

]
= ma(b− a) Ω̇ ẑ − m(g + z̈)a 2̂, (12)

The components of the equation of motion imply,

ẑ : Ω̇ = 0, Ω = constant, (13)

1̂ : ω̇1 =
Ωż

a
, ω1 =

Ωz

a
+ ω10, (14)

2̂ :
(
I + ma2

)
z̈ + I Ω2z = −ma2g − I Ωω10. (15)

The center of the sphere executes simple harmonic motion in z,2 and if at time t = 0, z = 0,
ż = ż0, ω1 = ω10, then,

z =
ma2g + Ia Ωω10

I Ω2
(cos αt − 1) +

ż0

α
sinαt, where α = Ω

√
I

I + ma2
. (16)

We now consider under what conditions a golf ball could roll into a cup/vertical cylinder
such that at time t = 0 the motion is described by eq. (16).

According to eqs. (10) and (11), the velocity v0 and the angular velocity ω0 at this time
must be,

v0 = −Ω(b− a) 2̂ + ż0 ẑ , ω0 = ω10 1̂ +
ż0

a
2̂ − Ω

b − a

a
ẑ. (17)

The figure above shows side and top views of the ball as it enters the cup, after rolling
into it from the left while on the horizontal surface. At time t = 0, the ball has fallen through
height a, so ż0 = −√

2ag. If the ball arrived at the top of the cup with horizontal velocity
v0 (in the −2̂ direction), then this is also the horizontal velocity when the center of the ball
has fallen to z = 0, and so Ω = v0/(b − a). The angular velocity of the ball did not change
while it fell into the cup, so the angular velocity at the time of arrival was,

ωarrival = ω0 = ω10 1̂ −
√

2g

a
2̂ − v0

a
ẑ, varrival = −v0 2̂ = −Ω(b − a) 2̂. (18)

If the ball had been simply rolling without slipping prior to arrival at the cup, then ω10 = v0/a
and the 2̂- and ẑ-components of ωarrival would be zero. Hence, only under special conditions

2This motion can be regarded as a nutation about steady motion with angular velocity Ω in a horizontal
circle at z = −(ma2g + Ia Ω ω10)/I Ω2.
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of rolling with slipping at the moment of arrival at the cup could the ball roll into it and
pop back out after following motion of the form (16).

For a golf ball of uniform mass density, I = 2ma2/5, and α =
√

2/7 Ω = Ω/1.87. If the
golf ball does pop out of the hole, it does so in somewhat less than one period of the vertical
oscillation, i.e., in less the 1.87 revolutions of the ball around the vertical axis of the cup.

An early discussion of the problem is on p. 354 of Besant, Treatise on Dynamics (1914).
http://kirkmcd.princeton.edu/examples/mechanics/besant_14.pdf

It was briefly mentioned on p. 26 of Littlewood’s Miscellany (1953),
http://kirkmcd.princeton.edu/examples/mechanics/littlewood_miscellany.pdf

It is solved via Lagrange’s method on p. 95 of J.I. Něımark and N.A. Fufaev, Dynamics of
Nonholonomic Systems (Am. Math. Soc., 1972),
http://kirkmcd.princeton.edu/examples/mechanics/neimark_72.pdf

Other discussions of it include, M. Gaultieri et al., Golfer’s dilemma, Am. J. Phys. 74, 497
(2006), http://kirkmcd.princeton.edu/examples/mechanics/gaultieri_ajp_74_497_06.pdf
O. Pujol and J.P. Pérez, On a simple formulation of the golf ball paradox, Eur. J. Phys. 28,
379 (2007), http://kirkmcd.princeton.edu/examples/mechanics/pujol_ejp_28_379_07.pdf

O. Pujol and J.-P. Pérez, The golfer’s curse revisited with motion constants, Am. J. Phys.
90, 657 (2022), http://kirkmcd.princeton.edu/examples/mechanics/pujol_ajp_90_657_22.pdf
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