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1 A Single Grid Plane

(See also [1] and chap. 3 of [2].)
We first consider a single grid plane, as shown in Fig. 1, that consists of wires along the

z axis, separated by distance a in the plane y = 0.

Figure 1: A grid of wires with spacing a in the plane y = 0.

The simplest analysis of this grid is when each wire carries charge λ per unit length
(and no other charges are present). The form of the potential V (x, y) can be obtained via
separation of variables as in Appendix A, or via conjugate functions [3]. The result is (in
Gaussian units),

V (x, y) = −λ ln

[
2

(
cosh

2πy

a
− cos

2πx

a

)]
. (1)

1.1 Behavior far from the grid

For large |y|, cosh(2πy/a) → e2π|y|/a/2, so V (x, y) → −2πλ |y|/a. This corresponds to a
uniform electric field of strength ±2πλ/a in the y direction, as would also be generated by
a uniform sheet of charge of density,

σ =
λ

a
. (2)

If this grid is surrounded by other electrodes such that the field for y > 0 and far from
the grid wires is E+, and the field for y < 0 is E−, then Gauss’ law tells us that the charge
on the wires is related by,

E+ − E− = 4πσ = 4π
λ

a
. (3)

1.2 Behavior close to a grid wire

For simplicity, we consider the wire whose center is at (0,0). As shown in eq. (48), the
equipotentials close to the wire are circles, with,

V (x, y) ≈ −2λ ln
2πr

a
= 2λ ln

a

2πr
. (4)
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If the wires have radius r0 � a, then the potential of a wire is,

Vwire ≈ 2λ ln
a

2πr0
=

a(E+ − E−)

2π
ln

a

2πr0
. (5)

Also of interest is the electric field strength at the surface of a wire, which we obtain
from eq. (4):,

Er,wire = −dV (r = r0)

dr
≈ 2

λ

r0
= (E+ − E−)

a

2πr0
. (6)

Because the potential depends only on r for r � a, the electric field near the wire is radial
and azimuthally symmetric. Hence, the surface charge distribution on the wire, σ = Er/4π,
is also azimuthally symmetric.

If the grid is used in a gas-filled particle detector, the field (6) can cause multiplication
of the drifting electrons.

2 Grid + Planar Electrodes

The grid considered in sec. 1 can be surrounded by a pair of planar electrodes at y = −b1

and b2 to form a device whose unit cell is shown in Fig. 2. In general, the potential of the
lower cathode of the cell is V1, that of the upper cathode is V2, and that of the grid is V0.
We denote the volume −b1 < y < 0 and region 1, and the volume 0 < y < b2 as region 2.
Then E1(x, y) is the electric field in region 1, etc.

Figure 2: An “electrodeless” drift chamber is a hollow rectangular prism of
active area a× b (= b1 + b2) with two opposing faces that are conductors, two
faces that are dielectric, and a wire running down the center. During operation
of the chamber the dielectric surfaces charge up with positive ions until the
electric field is parallel to the dielectric surface. Hence, the interior of this
chamber is also a unit cell of a multiwire proportional chamber with planar
cathodes.
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2.1 Grounded Planar Electrodes

In Appendix B we analyze the particular case that the planar electrodes are grounded,
V1 = V2 = 0, whose behavior is closely related to that of an isolated grid. A detailed
expansion for the potential is given in eqs. (54)-(55). For |y| >∼ a the electric field is uniform
and the potential varies linearly with y. Close to a wire the equipotentials are circles and
the electric field is radial, as shown in Fig. 3.

Figure 3: The electric potential (top) and field lines (bottom) as calculated for
the geometry of an “electrodeless” drift chamber using the computer program
GARFIELD [8].

The potential on the wire (of radius r0) is now given by,

Vwire = V0 ≈ 4πλb1b2

ab
+ 2λ ln

a

2πr0
=

4πb1b2(1 + K)

ab
λ (V1 = V2 = 0), (7)

where,

K ≡ ab

2πb1b2
ln

a

2πr0
. (8)

The (total) charge density on the wire can therefore be written as,

λ =
abV0

4πb1b2(1 + K)
(V1 = V2 = 0). (9)

The term 4πλb1b2/ab of eq. (7) corresponds to a sheet of charge density λ/a at y = 0,
which is at distances b1 and b2 from grounded planes. For such a sheet, Gauss’ law determines
electric fields in regions 1 (−b1 < y < 0) and 2 (0 < y < b2) to be,

E1,sheet = −4πλb2

ab
, and E2,sheet =

4πλb1

ab
(V1 = V2 = 0), (10)

so V0,sheet = −E1b1 = E2b2 = 4πλb1b2/ab. The charge densities on the two sides of the
sheet would be σ1,2 = ∓E1,2,sheet/4π, which sum to the total charge density σ = λ/a that
was introduced in eq. (2). However, σ1 �= σ2 if b1 �= b2. This suggests that the charge
distribution on the wire is no longer azimuthally symmetric if b1 �= b2.
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2.1.1 Angular Distribution of Charge on a Wire

To analyze the azimuthal dependence of the charge distribution on the wire, we consider the
fields in the device to be the sum of a uniform background field EB plus a field E0(x, y) that
is antisymmetric about the grid, i.e., antisymmetric in y. That is,

E1(x,−y) = EB − E0(x, y), E2(x, y) = EB + E0(x, y). (11)

For |y| >∼ a all of these fields become uniform, with values corresponding to the grid being
transformed into a sheet, so we can write

E1,sheet = EB − E0,sheet, E2,sheet = EB + E0,sheet. (12)

Using (10) we find,

EB =
E1,sheet + E2,sheet

2
=

2πλ(b1 − b2)

ab
, (13)

E0,sheet =
E2,sheet −E1,sheet

2
=

2πλ

a
= 2πσ. (14)

The antisymmetric part of the field, E0, is essentially identical to that of the isolated
grid, considered in sec. 1. Hence, the charge distribution σ0 on the wire corresponding to
this field is azimuthally symmetric, with value,

σ0 =
λ

2πr0

. (15)

The uniform background field EB induces no net charge on the conducting wire, but
does lead to a dipolar charge distribution. This is described by the well-known solution to
the problem of a grounded conducting wire in an otherwise uniform background field. The
potential has the form,

VB = −EB

(
r − r2

0

r

)
sin θ, (16)

where angle θ is measured from the x-axis. The charge distribution σB induced on the wire
by field EB is therefore,

σB =
EB,r(r0)

4π
= − 1

4π

∂VB(r0)

∂r
=

EB sin θ

2π
=

λ(b1 − b2) sin θ

ab
. (17)

The total distribution of charge on the wire is the sum of eqs. (15) and (17),

σwire(θ) =
λ

2πr0

(
1 +

r0EB sin θ

λ

)
=

λ

2πr0

(
1 +

2πr0

a

(b1 − b2) sin θ

b

)
. (18)

Since (b1 − b2)/b ≥ −1, the charge distribution σwire(θ) has the same sign as λ for all
angles. The charges on the grounded cathodes have the opposite sign to λ, and all field lines
flow from the cathodes to the grid wires (or all lines flow from the grid to the cathodes).
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2.2 Arbitrary Potentials on the Electrodes

The general case, with potential V1 at y = −b1 and V2 at y = b2, can be built up from the
case of grounded cathodes by adding the linearly varying potential,

ΔV = V1
b2 − y

b
+ V2

b1 + y

b
, (19)

to that of eqs. (54)-(55). Combining eqs. (7) and (19), the potential on the wire of radius r0

(at y = 0) is,

V0 ≈ V1
b2

b
+ V2

b1

b
+

4πb1b2(1 + K)

ab
λ, (20)

which determines the (total) charge density λ to be,

λ ≈ a(V0b− V1b2 − V2b1)

4πb1b2(1 + K)
=

a

4π(1 + K)

(
V0 − V2

b2
− V1 − V0

b1

)
. (21)

2.2.1 Fields Far from the Grid

Recall that if the grid is transformed into a continuous sheet then λ/a becomes the areal
charge density. Equation (21) is consistent with this limit if we suppose that a/2πr0 → 1
for a sheet, in which case the logarithmic term K vanishes and λ/a → (E2 − E1)/4π with,

E1,sheet =
V1 − V0

b1
, and E2,sheet → V0 − V2

b2
, (22)

as expected from Gauss’ law.
The electric fields in the regions 1 and 2 differ from their values (10) in the case of

grounded cathodes (with charge λ on each wire) by the addition of the background field ,

EB =
V1 − V2

b
, (23)

due to the potential (20).
When electrode 0 is a wire grid, the values of the field strengths in regions 1 and 2 (away

from the wires) are the sum of eqs. (10) and (23) with λ according to eq. (21),

E1 =
V1 − V2

b
− 4πλb2

ab
≈ V1 − V0

b1
+

b2

b

(
V0 − V2

b2
− V1 − V0

b1

)
K

1 + K
, (24)

E2 =
V1 − V2

b
+

4πλb1

ab
≈ V0 − V2

b2
− b1

b

(
V0 − V2

b2
− V1 − V0

b1

)
K

1 + K
. (25)

If the grid is transformed into a sheet, the logarithmic constant K in eqs. (24) and (25)
vanishes and the fields revert to the values (22), as expected.

These approximations hold only for |y| >∼ a and a <∼ b1, b2. In this regime, the fields E1

and E2 differ only slightly from their values when the grid is replaced by a sheet. If E2 > E1

then the bulk field E1 in the presence of a grid is larger (and E2 is smaller) than the fields
(22) for a sheet. Of course, since the y-integral of the field E1 must always equal V1 − V0, a
larger field over most of the interval −b1 < y < 0 implies that E1 must be small (or negative)
near y = 0.
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2.2.2 Angular Distribution of Charge on a Wire

We can calculate the angular distribution of charge on a grid wire as was done in sec. 2.1.1.
However, the “background” electric field that induces this angular distribution is not simply
eq. (23) [due to potentials V1 and V2 on the cathodes], but the sum of this and eq. (13)
[which is the uniform part of the field of a grid plus grounded cathodes]. Thus, for purposes
of determining the angular distribution of charge on the wire, we write,

EB =
V1 − V2

b
+

2πλ(b1 − b2)

ab
. (26)

As in eq. (18), we now find the angular distribution to be,

σwire(θ) =
λ

2πr0
+

EB sin θ

2π
=

V1 − V2

2πb
sin θ +

λ

2πr0

(
1 +

2πr0

a

(b1 − b2) sin θ

b

)

=
V1 − V0

b1

b1 sin θ

2πb
+

V0 − V2

b2

b2 sin θ

2πb

+
a

8π2r0(1 + K)

(
V0 − V2

b2
− V1 − V0

b1

) (
1 +

2πr0

a

(b1 − b2) sin θ

b

)

=
V0 − V2

b2

[
a

8π2r0(1 + K)

(
1 +

2πr0

a

(b1 − b2) sin θ

b

)
+

b2 sin θ

2πb

]

− V1 − V0

b1

[
a

8π2r0(1 + K)

(
1 +

2πr0

a

(b1 − b2) sin θ

b

)
− b1 sin θ

2πb

]
. (27)

Unlike the case of a grid plus grounded cathodes, the distribution σwire(θ) can include
both positive and negative charges. This permits grids be made effectively transparent to
drifting electrons for a suitable range of potentials V0, V1 and V2.

2.2.3 Transparency of the Grid to Drifting Electrons

In other applications of grids to particle detectors, it is desired that ionization electrons that
are created in region 1 drift into region 2 without being “captured” by the grid. Rather,
the drifting electrons are to be collected at electrode 2. In this case, the grid should be
“transparent” to the drifting electrons.

We see from the discussion in sec. 2.1.1 that the transparency is zero for the grid of an
MWPC with grounded cathodes. This is, of course, desirable in that application, since the
grid of an MWPC, rather than electrode 2, serves to collect the drifting electrons.

To make the grid completely transparent to electrons in region 1, none of the field lines
that leave electrode 1 can end on the grid.1 Therefore, the charge on the grid wires must
have the same sign as the charge on electrode 1. The critical condition is that the point on
a grid wire closest to electrode 1, i.e., θ = −π/2, have zero charge.

1This condition is necessary, but perhaps not quite sufficient, since the drifitng electrons may not follow
field lines if these curve too sharply near the grid. We follow the conventional wisdom in adopting this
condition to obtain analytic results.
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Requiring that σwire(θ = −π/2) = 0 in eq. (27) we find,2

E2,sheet

E1,sheet
=

V0−V2

b2
V1−V0

b1

=
1 − 2πr0

a
(b1−b2)

b
+ 4πb1r0(1+K)

ab

1 − 2πr0

a
(b1−b2)

b
− 4πb2r0(1+K)

ab

≈ 1 +
4πr0

a
(1 + K) (full transparency), (28)

where K is defined in eq. (8). For a detector where region 1 is much larger than region 2,
and with wire spacing a equal to distance b2, this becomes,3

E2,sheet

E1,sheet
≈ 1 +

4πr0

a

(
1 +

1

2π
ln

a

2πr0

)
(a = b2 � b1). (30)

A typical grid might have a/2r0 ≈ 100, so ln(a/2πr0) ≈ 3.5, for which full transparency
requires,

E2,sheet

E1,sheet
≈ 1.1 (a = 200r0 = b2 � b1). (31)

2.2.4 From Full Transparency to Zero Transparency

It is sometimes desired to use a grid as a gate, changing the value of potential V0 on the grid
to a value such that the transparency is zero for electrons drifting from region 1. In this
case, all field lines from region 1 must terminate on the grid.

A simple way to achieve this is to switch the grid to potential V2. Then, there is no
electric field in region 2, so all field lines in region 1 must end on the grid, as desired.

For example, if we operate with V2 = 0 (to have the readout electronics on the collection
electrode 2 at ground potential), then the condition (31) for full transparency for, say b1 =
100b2, is that V0 = V1b2/(1.07b1 + b2) ≈ V1/108. Switching the small voltage V0 = V1/108 to
ground is a relatively easy task.

2.2.5 Gain Grid at the End of a Long Drift Region

In some gaseous particle detectors it is desired to collect the ionization electrons on a grid
after they have drifted across region 1, where the length b1 of the drift region is large compared
to the grid wire spacing a. Further, the electric field near a grid wire is to be so large that
Townsend avalanches occur, thereby amplifying the signal due to the drifting electrons.

A basic configuration for this has a planar electrode at y = −b1 at a large negative voltage
(V1 < 0), a grounded grid at y = 0 (V0 = 0), and another planar electrode at y = b2 ≈ a � b1

that is also at a negative voltage (V2 < 0) to insure that all electrons drifting in region 1 are
collected on the grid.

2Ref. [1] appears to claim that the critical ratio is simply 1 + 4πr0/a. Equation (3.23) of [2] appears to
be something like our form.

3When a � b1 � b2, then K ≈ 0 and the criterion for full transparency is,

E2,sheet

E1,sheet
≈ 1 +

4πr0

a
(a � b1 � b2). (29)

For example, in case of a mesh that is 80% open, r0/a = 0.1, and E2,sheet/E1,sheet ≈ 2.25.
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The field strength E1 in the bulk of region 1 is chosen to have a specific value suitable for
drifting electrons through the chamber gas. The electric field at the surface of a grid wire
must have a large value to produce gain via Townsend avalanches. According to eq. (6), the
field at the wire can be written as,

Ewire = (E2 − E1)
a

2πr0
≈

(
V0 − V2

b2
− V1 − V0

b1

)
a

2πr0 (1 + K)

≈ −
(

V2

a
+

V1

b1

)
a

2πr0 (1 + K)
, (32)

where E1 and E2 are the fields (24)-(25) in the bulk of regions 1 and 2, K is defined in
eq. (8), and the final form holds for the present example.

Even if V1 must be held at a value such that a field of strength V1a/2πb1r0(1 + K) is
too small to produce Townsend avalanches near the wire, voltage V2 can be independently
raised until the desired gas gain is achieved. For example, if the desired gas gain is achieved
when operating an MWPC with grounded cathodes at b1 = b2 = a and wires of radius r at
voltage V, then electric field at a wire of the MWPC is,

EMWPC wire ≈ − V

πr(1 + Kr)
, (33)

The drift chamber under discussion can achieve this field on its wires with,

V2 ≤ 2V
r0(1 + K)

r(1 + Kr)
, (34)

for any choice of V1. If r0 = r, then we need V2 ≤ 2V , etc.
Conversely, if the field strength V1a/2πb1r0(1 + K) is so large that the gain would be

excessive in the drift chamber, the wire radius r0 can be made larger than r and the gain
reduced to an acceptable value. Voltage V2 can then be varied to provide fine tuning of the
gas gain.

A Appendix A: Potential of a Single Grid Plane

(From Ph501, Problem Set 3 [4].)
A grid of infinitely long wires is located in the (x, y) plane at y = 0, x = ±na, n =

0, 1, 2, . . ., as shown in Fig. 1. Each line carries charge λ per unit length.
This problem is 2-dimensional, and is well described in rectangular coordinates (x, y).

We try separation of variables,

V (x, y) =
∑

X(x)Y (y) . (35)

Away from the surface y = 0, Laplace’s equation, ∇2V = 0, holds, so one of X and Y can
be oscillatory and the other exponential. The X functions must be periodic with period a,
and symmetric about x = 0. This suggests that we choose,

Xn(x) = cos knx, with kn =
2nπ

a
. (36)
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We first consider the regions y > 0 and y < 0 separately, and then match the solutions at
the boundary The Y functions are exponential, and should vanish far from the plane y = 0.
Hence, we consider,

Yn(y) =

⎧⎨
⎩ e−kny, y > 0,

ekny, y < 0.
(37)

However, we must remember that the case of index n = 0 is special in that the separated
equations are X

′′
0 = 0 = Y

′′
0 , so that we can have X0 = 1 or x, and Y0 = 1 or y. In the present

case, X0 = 1 is the natural extension of (36) for nonzero n, so we conclude that Y0 = ±y is
the right choice; otherwise X0Y0 = 1, which is trivial. Then, the potential V = ±y will be
associated with a constant electric field in the y direction, which is to be expected far from
the grid of wires.

Combining X and Y , our series solution thus far is,

V (x, y) =

⎧⎨
⎩ a0y +

∑
n>0 an cos 2nπx

a
e−2nπy/a, y > 0,

−a0y +
∑

n>0 an cos 2nπx
a

e2nπy/a, y > 0,
(38)

where we have used continuity of the potential at y = 0 to use the same an for both y > 0
and y < 0. Note, however, the sign change for a0, corresponding to the constant electric
field that points away from the wire plane.

At the boundary, y = 0, the surface charge density is,

σ = λ
∑

n

δ(x − na) =
1

4π
(Ey(0

+) −Ey(0
−)) =

1

4π

(
−∂φ(x, 0+)

∂y
+

∂φ(x, 0−)

∂y

)

= − a0

2π
+

1

a

∑
n

nan cos
2nπx

a
. (39)

We evaluate the an by considering the interval [−a/2 < x < a/2]. Multiplying by
cos(2nπx/a) and integrating, we find,

a0 = −2πλ

a
, and an =

2λ

n
. (40)

The potential is then,

V (x, y) = −2πλ|y|
a

+ 2λ
∑
n>0

1

n
cos

2nπx

a
e−2nπ|y|/a. (41)

To sum the series, we write it as,

V (x, y) = −2πλ|y|
a

+ 2λRe
∑
n>0

1

n
e2nπx/a e−2nπ|y|/a

= −2πλ|y|
a

+ 2λRe
∑
n>0

1

n
(e2πix/a e−2π|y|/a)n

= −2πλ|y|
a

− 2λRe ln(1 − z), (42)
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where,
z = e2πix/a e−2π|y|/a. (43)

To take the real part, we note that if,

ln(1 − z) ≡ u + iv, then 1 − z = eu eiv, |1 − z| = eu, (44)

and,

Re ln(1 − z) = u = ln |1 − z|
= ln |1 − e−2π|y|/a[cos(2πx/a) + i sin(2πx/a)]

= ln
√

1 − 2 cos(2πx/a)e−2π|y|/a + e−4π|y|/a

=
1

2
ln[1 − 2 cos(2πx/a)e−2π|y|/a + e−4π|y|/a]. (45)

The potential is now,

V (x, y) = −λ ln e2π|y|/a − λ ln[1 − 2 cos(2πx/a)e−2π|y|/a + e−4π|y|/a]

= −λ ln[e2π|y|/a − 2 cos(2πx/a) + e−2π|y|/a]

= −λ ln

[
2 cosh

2πy

a
− 2 cos

2πx

a

]
(46)

This result can also be deduced by the use of functions of a complex variable [3].
For x, y small:

cosh
2πy

a
− cos

2πx

a
≈ 1 +

1

2

(
2πy

a

)2

+ . . . − 1 +
1

2

(
2πx

a

)2

+ . . . =
1

2

(
2πr

a

)2

(47)

where r2 = x2 + y2. Thus, at small x, y,

V (x, y) → −2λ ln
2πr

a
, (48)

which is just the potential for an individual line charge λ. Close to each wire, the equipo-
tentials are cylinders around this wire.

B Appendix B: Grid + Planar Cathodes

(Multiwire Proportional Chamber and “Electrodeless” Drift Chamber, from [5].)
Consider a unit cell of a wire grid with spacing a surrounded by a pair of conducting

cathodes at distances b1 and b2 (where b1 + b2 ≡ b), as shown in Fig. 2.
If the side walls of the cell are dielectric, we have the configuration of the so-called

“electrodeless” drift chamber.
If the unit cell shown in Fig. 2 is replicated so as to form an array of cells in x with

period a, we have in the geometry of a multiwire proportional chamber (MWPC) with
planar cathodes. Typically b1 = b2 = b/2.

Find the potential assuming that the electric field is parallel to the surfaces x = ±a/2,
that the cathodes are grounded, and that the wire carries charge λ per unit length. Generalize
this solution to the case of potential V1 on the lower cathode, V2 on the upper cathode, and
V0 on the grid.
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B.1 Wire On the x Miplane

We analyze the cell, shown in Fig. 2, in a coordinate system with its origin on the wire.
Assuming grounded cathodes and that no electric field lines cross the surfaces x = ±a/2,
the boundary conditions on the outer surfaces are,

V (x,−b1) = V (x, b2) = 0,
∂V (−a/2, y)

∂x
=

∂V (a/2, y)

∂x
= 0, (49)

We consider the cell to be divided into two regions, y < 0 and y > 0. The matching
condition on the plane y = 0 follows from Gauss’s law,

− ∂V (x, 0+)

∂y
+

∂V (x, 0−)

∂y
= 4πλδ(x), (50)

The boundary conditions (49) on the outer surfaces of the cell indicate that a suitable
series expansion for the potential, continuous across y − 0, is,

V (x, y > 0) = A0b1(b2 − y) +
∞∑

n=1

An cos
2nπx

a
sinh

2nπ(b2 − y)

a
sinh

2nπb1

a
, (51)

V (x, y < 0) = A0b2(b1 + y) +
∞∑

n=1

An cos
2nπx

a
sinh

2nπ(b1 + y)

a
sinh

2nπb2

a
. (52)

Using the matching condition (50) at y = 0 we find the coefficient An to be,

A0 =
4πλ

ab
, An =

2λ

n sinh 2nπb
a

, (53)

where b + b1 + b2. Hence, the potential can be written as,

V (x, y > 0) =
4πλb1(b2 − y)

ab
+ 4λ

∞∑
n=1

1

n
cos

2nπx

a
sinh

2nπ(b2 − y)

a

sinh 2nπb1
a

sinh 2nπb
a

, (54)

V (x, y < 0) =
4πλb2(b1 + y)

ab
+ 4λ

∞∑
n=1

1

n
cos

2nπx

a
sinh

2nπ(b1 + y)

a

sinh 2nπb2
a

sinh 2nπb
a

. (55)

When b1 = b2 = b/2, the potential simplifies to,

V (x, y) =
πλb

a
− 2πλ |y|

a
+ 2λ

∞∑
n=1

1

n
cos

2nπx

a

sinh 2nπ(b/2−|y|)
a

cosh nπb
a

(origin at the wire). (56)

For a � b, eq. (56) further simplifies to,

V (x, y) ≈ −2πλ |y|
a

+ 2λ

∞∑
n=1

1

n
cos

2nπx

a
e−2nπ|y|/a (origin at the wire), (57)

neglecting the constant term πλb/a, which then agrees with eq. (41) (and hence the closed
form (46) also) of Appendix 1.
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Apparently, the potential (56) can be expressed in “closed form” using Jacobian elliptic
functions [6, 7], although it is not clear this has much practical advantage.

Except near y = 0, the exponential terms in eqs. (54)-(57) are small. So over most of
the cell the potential varies linearly with y, and the electric field is parallel to the y axis.
The field strength is ±2πq/a, as if the charge q were uniformly distributed over the plane
(|x| < a/2, 0). For x ≈ 0, y ≈ 0 the equipotentials become cylinders around the wire, as
shown in Fig. 3. This is, of course, the desirable field configuration for a drift chamber. .

The potential at the origin diverges. But, of course, a physical realization of a wire
chamber involves a wire of finite radius r0. We can estimate the potential at the surface of
the wire at position (x, y), where x2 + y2 = r2

0 � a, b, using eq. (56),

Vwire = V (x > 0, y) ≈ πλb

a
+ 2λ

∑
n=1

cos
2nπx

a

tanh 2nπb
2a

cosh 2nπy
a

− sinh 2nπy
a

n

≈ πλb

a
+ 2λRe

∑
n=1

e2nπix/acosh 2nπy
a

− sinh 2nπy
a

n

=
πλb

a
+ 2λRe

∑
n=1

e−2nπy/ae2nπix/a

n
=

πλb

a
+ 2λRe

∑
n=1

[
e−2π(y−ix)/a

]n

n

=
πλb

a
− 2λRe ln

[
1 − e−2π(y−ix)/a

]
. (58)

Then writing ln
[
1 − e−2π(y−ix)/a

]
= u + iv we have,

eu+iv = eu cos v + ieu sin v = 1 − e−2π(y−ix)/a = 1 − e−2πy/a cos
2πx

a
+ ie−2πy/a sin

2πx

a
, (59)

e2u =

(
1 − e−2πy/a cos

2πx

a

)2

+ e−4πy/a sin2 2πx

a
=

(
1 − 2e−2πy/a cos

2πx

a
+ e−4πy/a

)

≈ 1 − 2

[
1 − 2πy

a
+

1

2

(
2πy

a

)2
][

1 − 1

2

(
2πx

a

)2
]

+ 1 − 4πy

a
+

1

2

(
4πy

a

)2

=

(
2π

a

)2

+

(
2πy

a

)2

=

(
2πr0

a

)2

, (60)

Re ln
[
1 − e−2π(y−ix)/a

]
= u ≈ ln

2πr0

a
, (61)

and we finally have,

Vwire ≈ πλb

a
− 2λ ln

2πr0

a
=

πλb

a
+ 2λ ln

a

2πr0
. (62)

The first term of this is just the “uniform” electric field Ey = 2πλ/a multiplied by the
distance b/2 between the wire and a ground plane. The second term is the same as the
potential (48) for a wire on an isolated grid.
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By comparing eqs. (54)-(55) with eq. (56), we see that the potential of the grid when
b1 �= b2 is given by,

Vwire ≈ 4πλb1b2

ab
+ 2λ ln

a

2πr0
. (63)

Again, the first term follows from Gauss’ law for a plane of charge density λ/a at distances
b1 and b2 from grounded planes; the electric fields in regions 1 and 2 are then E1,2 =
∓4πλb2,1/ab, so V = −E1b1 = E2b2 = 4πλb1b2/ab.
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