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1 Problem

A gyrostat is a massive sphere (or disk) mounted such that the supporting apparatus exerts no
torque about the center of the sphere. The earliest gyrostat was described by Bohnenberger
[1] in 1817, as shown below. The name gyroscope was applied to this apparatus by Foucault
2] in 1852, although this term has come to imply a sphere or disk mounted with a fixed
point on its axis. Lord Kelvin used the term gyrostat in 1874 [3], but in the more modern
sense of gyroscope.

Consider here a pair of gyrostats joined by a link, as sketched below. Discuss the motion
of the system when subject to no external forces, and when the “spin” angular momentum
of the gyrostats is large compared to the orbital angular momentum of the system.

Show that if the spin angular velocity vectors of the two gyrostats are antiparallel, and
both lie in the plane of their orbits, then the gyrostats “bob” (oscillate) perpendicular to
the plane of the orbit, although the center of mass of the whole system is at rest

This problem is a mechanical analog of a pair of high-spin neutron stars [4].



2 Solution

We consider the problem in the lab frame where the center of mass of the system is at
rest. Each sphere has rest mass My, radius a, and the separation between the centers of the
spheres is d = 20.

We approximate the link and mounting apparatus of the spheres as massless. Then, the
link can only exert a tension along its length.

In the first approximation the spin angular momentum is unaffected by the orbital motion
of the spheres (and the center of mass of each sphere is at it geometric center).! The force
between the spheres, due to the link, is then a central force, so the system has constant
orbital angular momentum, and the motion is simply uniform circular motion in a plane,
with angular velocity vector €. Taking b to be the distance vector from the center of mass
of the system to the center of the first sphere, its center has velocity €2 x b (with ©-b = 0),
and the second sphere has the opposite velocity. We assume that b < ¢, where ¢ is the
speed of light in vacuum,

2.1 Perturbed Motion

In the next approximation, we note that the portion of a sphere whose spinning motion is
in the same direction as the orbital motion of its center has larger relativistic mass/energy
than the portion whose spinning motion is in the opposite direction. This results in a shift
of the center of mass/energy, X.m; of sphere i away from its geometric center, illustrated in
the figure below (adapted from [7]), with x;, given by [8],
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where the spin angular momenta of the spheres are (to zeroth order,
SZ‘ = kMia2wi, (2)

k = 2/5 for a uniform sphere, k = 2/3 for a spherical shell, w; are the spin angular velocities
of the spheres (with w;a < ¢), whose centers have velocities,

Vv, X +0 x b7 (3)

'If the mass distribution of the spheres were not spherically symmetric the motion would be quite
complicated [5], being an extension of Poinsot’s solution [6] for the free motion of a rigid body. When
relativistic effects are included below, the mass/energy distribution is not spherically symmetric, but the
spinning spheroids do not behave as rigid bodies, so the analysis of [5] does not apply.

2The spinning sphere can be regarded as a set of spinning hoops with a common axis.



the masses (= energy/c?) of the spheres in the lab frame are,
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and the approximations in eqs. (1) and (4) are accurate to order 1/c?.

For simplicity we now assume that the two spin angular velocities have the same mag-
nitude (but not necessarily the same direction). Then, M; ~ Ms, and since the center of
mass/energy of the system is at the origin (by definition), we have from egs. (1) and (3)
that,
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Writing the perturbed position of the center of the link as xo = 0 b + €2, the centers of the
spheres are at x; = xo £ b, such that, x; + xo = 20 b + 2¢ 2, and we find from eq. (5) that
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where 6 is the angle between w and €2, such that,
@ = cos 0§ + sin 6 cos U b + sin O sin Ot Q2 x b. (8)
Noting that b = € x b, we have that the velocity of the center of the link i,
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When w is parallel to €2, the perturbation is in the plane of the orbits, whose geometric
center xo = d b moves in a small circle with angular velocity €2, which is hardly noticeable
by a distant observer.? However, when the spin vector w is parallel to the plane of the orbit
the perturbation is perpendicular to this plane and the center x, = € € of the orbit oscillates
sinusoidally with the orbital angular frequency €2; the spheres appear to “bob” up and down
with respect to orbital plane [4, 9].* The figure below is adapted from [4] and [7].

The centers of the two
> spheres are below the
plane of the orbit

b Q
AN
e

cm of entire system

(N g N
~
S

3This behavior is similar to that of a washing machine with an unbalanced load during its spin cycle
[10]. The shaft of the drum moves in a small circle such that the center of mass of the unbalanced drum is
at rest on the axis of rotation of a balanced drum.

4This effect appears to have been first noticed in numerical simulations, fig.3 of [9], having been missed
in analytic studies such as [11, 12, 13, 14].



In more detail, we note that the velocity of the center of sphere 7 is,
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and that the acceleration of the center of sphere 7 is,
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The velocity of the center of mass/energy of sphere i is, from eqs. (1) and (8),
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which has no component perpendicular to the link, i.e., no component along 2. As expected
from €q. (5)7 Xcm,total ~ Xcm,l + Xcm,2 = 0.

2.2 “Hidden” Momentum

Although the perturbations to the motion are visible to the careful observer, the system
has been characterized in [4] as possessing “hidden” momentum. This term was introduced
by Shockley [15] to describe certain electromechanical systems that contain nonzero electro-
magnetic field momentum while seeming to be at rest, with apparently zero total mechanical
momentum.

The mechanical system of the present example does have its center of mass/energy at
rest, and the total momentum of the system is always zero, while the center of the orbital
motion (center of the link) oscillates with respect to the center of mass/energy. A naive
observer might assume that there is net momentum associated with the oscillation, in which
case there might be an equal and opposite “hidden” momentum in the orbiting, spinning
spheres.

Does this system actually contain “hidden” momentum in the sense introduced by Shock-
ley?

To answer this we need a definition of “hidden” momentum that is applicable to all-
mechanical systems as well as to electromechanical ones.

One possibility is to define the “relativistic” component of mechanical momentum to be
“hidden”, i.e.,
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for a rest mass my moving with velocity v.> However, the momentum (13) is not really
hidden in that if the momentum of the moving mass is measured the result is ymov and not
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°The author contemplated the definition (13) in [16], but no longer favors it.

6Tt may be that arguing that the “mass” of a moving particle is just its rest mass mg [17] leads some people
to consider that the “momentum” of a moving particle is just mgv. Then, ymgv is not the “momentum”,
and so (v — 1)mgv might be called the “hidden momentum”.
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The term “hidden” momentum appears in the text of [4] after their eq. (35) where it
seems to be said that,

=P - MoVgeometric, (14)

with the velocity Vgeometric Of sphere i taken to be v; of eq. (10) for the geometric center of the
sphere, rather than the velocity vem; of its center of mass/energy. This peculiar definition
leads to the identification of “hidden” momentum as the quantity kMpa’w; x a;/c* = S; X
F;/Myc* (which would appear in eq. (12) when multiplied by My or M).

The author favors a definition of “hidden” momentum inspired by discussions with Daniel
Vanzella [18],
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where P is the total momentum of the subsystem, M = U/c? is its total “mass”, U is its
total energy, Xen is its center of mass/energy, vem = dXem/dt, p is its momentum density,
p = u/c?isits “mass” density, u is its energy density, v, is the velocity (field) of its boundary,
and,

uv
= (16)
is the 4-force density exerted on the subsystem by the rest of the system, with 7" being the
stress-energy-momentum 4-tensor of the subsystem. The rationale for this definition, and
links to several illustrative examples, are given in [19].7-®

A basic consequence of the definition (15) is that an isolated system, such as the present
example, has zero total “hidden” momentum. An additional consequence is that spatially
disjoint subsystems cannot contain “hidden” momentum. So, if we consider each gyrostat
(plus half of the link) to be a separate subsystem, there will be no “hidden” momentum
in either gyrostat. As discussed in [8], P = Mwv,, for each spinning, translating sphere.
Further, each of the integrals in eq. (15) vanishes for each subsystem, so there is no “hidden”
momentum in either subsystem by this definition.

A pair of spinning neutron stars can contain “hidden” momentum (according to definition
(15)) in its subsystems of matter and gravitational field. Likewise, an electromechanical
analog of the neutrons stars as a pair of charge magnetic moments can contain “hidden”
momentum in its subsystems of matter and electromagnetic fields. However, this “hidden”
momentum has negligible effect on the motion of the overall geometric center of the matter
subsystem, as acknowledged in [4].

"Steps towards the definition (15) appear in sec. I of [4], but the authors omit the boundary integral in
their eq. (3) when integrating their eq. (2) by parts. The boundary integral does appear in eq. (2.16) of [20],
which would be the same as eq. (15) if the terms labeled “kinetic” and “SSC” were replaced by the Mvey,
as suggested by eq. (2.14).

8As discussed in sec. 3 of [19], we do not advocate replacing Vem by Veentroia in definition (15), where
the centroid of sphere 4 is the position x; of its geometric center.



2.3 Electromechanical Analog

An electromechanical analog of a pair of orbiting, spinning neutron stars is a pair of spheres
with opposite electrical charges £ and equal rest masses My, which spheres are rotating
with spin angular velocities w; as well as orbiting about one another.

As noted in [21] the analysis is somewhat simpler if the charged spheres are taken to
be spherical shells (in their rest frames), of radius a and k = 2/3. The mechanical angular
momenta of the spinning shells, if their centers are at rest, are,
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and their electromagnetic-field spin angular momenta, relative to their geometric centers,
are,
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The ratio of the magnitudes of the spin angular momenta is,
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where ag = Q?/Myc? is the classical charge radius of the spherical shell, which is small
compared to the electron’s classical charge radius, 3 x 107!* cm. Hence, the electromagnetic
field angular momentum is very small compared to the mechanical angular momentum for
any macroscopic (non-quantum) system of charged, spinning spherical shells, and the motion
of the electromechanical system is identical to that of the all-mechanical system of sec. 2.1
to a very good approximation. See sec. V of [4] for greater detail.

However, the electromechanical system does possess “hidden” momentum in its electro-
magnetic and mechanical subsystems, according to definition (15).

We first note that a magnetic moment g which is at rest in an external electric field E*
(due to, say, a distant electric charge also at rest in the * frame) has nonzero electromagnetic
field momentum [22].°

90nly an Amperian magnetic moment (due to electrical currents) has “hidden” momentum in an external
electric field. A Gilbertian moment (due to a pair of opposite magnetic charges) would have none [23].



The center of energy of the electromagnetic field is at rest in the * frame, so we say that the
electromagnetic field momentum (21) is “hidden” momentum according to definition (15).1°

The mechanical subsystem of the spinning shell (and the distant electrical charge at rest)
also has “hidden” momentum, which is equal and opposite to that of eq. (21). If the charged
shell consists of charges embedded in a rigid nonconductor, the charges on the side of the
spinning shell (taken for simplicity to have p L E*) closer to the distant (positive) charge
are in a higher electrical potential and so have a higher electrical energy. The total energy of
the charges is the same around a current loop on the shell (which spins like a rigid body), so
the mechanical mass is lower on the side closer to the distance charge. Hence, the mechanical
momentum of the moving charges is lower than for those on the opposite side of spinning
shell, so there is a net mechanical momentum in the direction w x E*, which is opposite to
the vector Py, 1!

The above argument is essentially unchanged on transforming to the lab frame, and to
a good approximation the “hidden” momentum in the electromagnetic fields of the pair of
charged spinning shells is, combining eqs. (19) and (21),

a2(22

Pridden zif)xw—w, 22
hidden,EM = 7575 75 (wo 1) (22)
and the mechanical “hidden” momentum is the negative of this. However, as noted above,
and in [4], this “hidden” momentum has negligible effect on the motion of the orbiting,
charge, spinning shells, which motion is related to the “ordinary” (though subtle at order
1/c*) mechanical properties of the system as in sec. 2.1.12
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