Relativistic Harmonic Oscillator

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(April 28, 2013)

1 Problem

Estimate the period 7 of a “simple” harmonic oscillator consisting of a zero-rest-length
massless spring of constant k that is connected to a rest mass mg (with the other end of the
spring fixed to the origin), taking in account the relativistic mass.

2 Solution

2.1 Quick Estimates

Ignoring relativistic effects, the angular frequency wy and the period 7 of the oscillator are,
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In this approximation, the oscillating mass has position and velocity,
x = Acoswot, v = — Awg sin wyt. (2)

In general, the oscillating mass has (time-dependent) relativistic mass,
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where ¢ is the speed of light in vacuum. We expect that the period 7 of oscillation of the
relativistic mass can be approximated as,
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where (m) > myg is an appropriate average of the relativistic mass. This might be the time
average,
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in which case,
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However, it could be that the spatial average is more appropriate,
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noting that sinwt = v/1 — cos? wt ~ \/1 — 22 /A? ] in the approximation that oscillating mass
has z-coordinate x = A coswt. In this case,
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As many other averages of the relativistic mass can be imagined, we seek a method that
clarifies what type of approximation is best.

2.2 A Better Estimate

A different approach is to note that the motion is periodic with spatial amplitude A, and so
the period 7 can be computed as,
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Total energy E is conserved in this example,
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where the potential energy of the system is kz?/2, such that,!

1 79 1+ k(A? — 22)/2moc? _To ( 1 3k A? — .CE2)

= ~ — +
v 21 AT =22\ /14 k(A? = 22) [Admo?  2m \VAZ—a? 8rmigc?

(11)

Hence,
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The correction term in this result is 2% larger than that in the estimate (8) based on the
spatial average of the relativistic mass.

The “exact” periord of a relativistic harmonic oscillator can be given as an elliptic integral.
A series approximation to this integral is given in [2].

!There is a sign error in the correction term of eq. (7-150), p. 325 of [1], which corresponds to eq. (11)
of the present note. Thanks to Bill Jones for pointing this out.
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