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1 Problem

Because of the finite speed c of propagation of electromagnetic effects, the fields of a moving
charge are associated with its retarded position rather than its present position, as noted by
Liénard [1] and Wiechert [2]. In the case of a moving charge and a fixed charge, it would seem
that the forces on them are not equal and opposite, which might permit a net propulsion of
the system.

In particular, consider the example sketched below (due to Vladimir Onoochin) in which
four electric charges q rotate in a circle of radius a with azimuthal velocity v, while charge
Q is fixed on the axis of rotation at distance b from the center of the circle. Does this system
experience a net axial force, creating a kind of electromagnetic helicopter?

2 Solution

We consider the system when its axis is held fixed.
The forces on the moving charges q due to the fixed charge Q are Fq = qEQ, and the

forces on the fixed charge are FQ = QEq.
The (static) Coulomb field of charge Q at charge q is,

EQ =
Q

R3
R, (1)

where R = Rq−RQ points from Q to q. Hence, the axial force on a charge q is, in a cylindrical
coordinate system (r, θ, z) with origin at the center of the circle and z-axis perpendicular to
it,

Fq,z =
qQb

R3
. (2)
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2.1 Point Charges with Q on Axis

In case of point charges (with Q on the z-axis), the distance between charges q and Q is
R =

√
a2 + b2 at all times.

The electric field of a moving charge q can be deduced from a scalar potential φ and a
vector potential A according to,

Eq = −∇φq −
1

c

∂Aq

∂t
, (3)

in Gaussian units, where the retarded potentials (in the Lorenz gauge) are,

φq =
q

[R]
, Aq =

q [v]

[R]
, with [f(t)] = f(t′ = t − R(t′)/c). (4)

For point charges, the retarded distance [R] is equal to the present distance R (although [R] is
different from R), so φq = q/R, i.e., the retarded scalar potential is simply the instantaneous
Coulomb potential. Also, since the velocity v has no z-component, the axial force on charge
Q is due only to the scalar potential φq,

FQ,z = −Q
∂φq

∂zQ
= −qQ

∂

∂zQ

1

R
= −qQb

R3
= −Fq,z. (5)

Hence, for point charges (with fixed charge Q on the z-axis) there is no net axial force
on the system and the “electromagnetic helicopter” doesn’t fly.

2.2 Extended Charges with Q off Axis

If the fixed charge Q extends away from the z-axis, the retarded distance [R] between a
small element δQ of Q and an element δq of the moving charge q is no longer equal to their
present separation R.

It is convenient to express the retarded field Eδq in terms of present quantities via an
expansion in powers of v/c, and to content ourselves with this expansion to order v2/c2

(which is a very small quantity for velocities less than, say, the speed of sound in air). Such
an expansion was first given by Heaviside in art. 48 of [3], but is better known as the Darwin
approximation [4].1

Darwin [4] worked in the Coulomb gauge, and kept terms only to order v2/c2. Then, the
scalar and vector potentials due to a charge e that has velocity v are,2

φ ≈ e

R
, A ≈ e[v + (v · n̂)n̂]

2cR
, (6)

where n̂ is directed from the charge to the observer, whose (present) distance is R.

1For some comments on the Darwin approximation, see [5].
2See, for example, sec. 65 of [6] or sec. 12.6 of [7]. A derivation of eq. (6) based on an approximation to

Maxwell’s equations rather than the Darwin Lagrangian is given in [8].

2



The electric and magnetic fields of a charge e at distance R from an observer follow in
the Darwin approximation from the potentials (6) as,

E = −∇φ − ∂A

∂ct
≈ e

R2
n̂− e

2c2R

(
v̇ + (v̇ · n̂)n̂ +

3(v · n̂)2 − v2

R
n̂

)
, (7)

B = ∇ ×A ≈ ev × n̂

cR2
, (8)

where v̇ = dv/dt is the (present) acceleration of the charge.3

In the present example, we desire the retarded electric field Eδq at the position of element
δQ of the fixed charge. We write the Cartesian location of charge δq as Rq = (xq, yq, zq) =
rq + zq ẑ with rq = (xq, yq, 0), and that of charge δQ as RQ = (xQ, yQ, zQ) ≡ rQ + zq ẑ. Then,
n̂ = −R/R where R = Rq − RQ = rq − rQ + (zq − zQ) ẑ, the velocity of element δq is
vq = ω × rq = ω(yq,−xq, 0) with ω = ω ẑ, ω = v/a, such that vq = ωrq, and the present
acceleration of element δq is v̇q = ω × vq = −ω2rq. Then, v̇q · n̂ = ω2rq · (rq − rQ)/R,
vq · n̂ = ω × rq · (rQ − rq)/R = ω · rq × rQ/R = ω(xqyQ − xQyq)/R, and,

Eδq = − δq

R3
R− δq

2c2R

(
−ω2rq −

ω2(r2
q − rq · rQ)

R2
R − 3ω2(xqyQ − xQyq)

2

R4
R +

ω2r2
q

R2
R

)

= − δq

R3
R +

ω2δq

2c2R

(
rq − (rq · rQ)R2 − 3(xqyQ − xQyq)

2

R4
R

)
. (9)

We are interested in the z-component of the force on element δQ due to element δq,

FδQ,z = δQEδq,z (10)

= −δq δQ

R3
(zq − zQ)

(
1 +

ω2

2c2R2

(
(xqxQ + yqyQ)R2 − 3(xqyQ − xQyq)

2
))

.

Meanwhile, the force on element δq due to the fixed charge element δQ is,

Fδq,z = δqEδQ,z =
δq δQ

R3
(zq − zQ). (11)

Thus, it appears that the z-component, Fz = FδQ,z + Fδq,z, of the self force on the system is
nonzero, if the fixed charge element δQ is not located on the z-axis, such that both xQ and
yQ are nonzero.

The location of the moving charge element δq can be written as (rq cos ωt, rq sinωt, zq),
such that the combined axial force is oscillatory,

Fz = Fδq,z + FδQ,z

= −ω2r2
qδq δQ

2c2R5
(zq − zQ)

(
(xQ cos ωt + yQ sin ωt)R2 − 3rq(yQ cosωt − xQ sinωt)2

)
.(12)

The “electromagnetic helicopter” does not fly if unconstrained, but it does vibrate (its center
of mass oscillates) vertically under the influence of its self force.

3Sec. 65 of [6] shows that in the Darwin approximation the Liénard-Wiechert potentials (Lorenz gauge)
reduce to φ = e/R + (e/2c2)∂2R/∂t2 and A = ev/cR, from which eqs. (7)-(8) also follow.

See [9] for applications of these relations to considerations of electromagnetic momentum.
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For example, if rq � R then |zq − zQ| ≈ R, so for yQ = 0,

Fz ≈ −ω2r2
qxQδq δQ

2c2R3
cosωt = M

d2zcm

dt2
, (13)

where M is the mass of the system. Then, the center of mass oscillates in z according to,

zcm ≈ z0 +
r2
qxQ

2R2

δq δQ/R

Mc2
cosωt = z0 +

xQ

2

r2
q

R2

UE

Mc2
cos ωt, (14)

where UE = δq δQ/R is the electrostatic energy of the charges. The amplitude of this
oscillation is extremely small, which justifies the neglect of its possible effect on the oscillatory
force (12).

It remains counterintuitive that the system can have a nonzero self force, which appears
to violate Newton’s third law (of action and reaction).

This is a famous historical issue, and led Ampère to devise a magnetic force law that
obeys Newton’s third law, although this is not the force law used here (which can be called
the Lorentz force law). See [10] for discussion of an experiment of Ampère which seems to
reinforce his view (and that of some others to this day) that the Biot-Savart-Grassmann-
Lorentz law is not always valid.4

2.3 Electromagnetic Momentum

2.3.1 Maxwell

In Maxwell’s earliest publication (at age 24) on electromagnetism [12], Part II is titled On
Faraday’s “Electro-tonic State”. On p. 52 Maxwell says:

Considerations of this kind led Professor Faraday to connect with his discovery of the in-
duction of electric currents the conception of a state in which all bodies are thrown by the
presence of magnets and currents. This state does not manifest itself by any known phe-
nomena as long as it is undisturbed, but any change in this state is indicated by a current
or tendency towards a current. To this state he gave the name of the “Electro-tonic State”.

Then on p. 65 Maxwell gives his theory of the electro-tonic state:

The entire electro-tonic intensity round the boundary of an element of surface measures the
quantity of magnetic induction which passes through that surface, or, in other words, the
number of lines of magnetic force which pass through the surface.

In vector notation, with A as the electro-tonic intensity and B as the magnetic induction,

∮
A · dl =

∫
B · dArea. (15)

4For another electromechanical example with similar issues to the present case, see [11],

4



Thus, we recognize Maxwell’s electro-tonic intensity as the vector potential,5 and it is often
said that Faraday’s electro-tonic state is the vector potential.

Maxwell continued discussion of his vector A on p. 290 of [13], now calling it the “elec-
trotonic state” and seeking a mechanical interpretation in terms of “molecular vortices”. On
p. 389 he associates the vector A with a kind of “reduced momentum”, arguing that if A is
changing there is a force on a unit electric charge given by dA/dt.6,7

In his great paper of 1865 [14], Maxwell reinforced this interpretation of his electro-tonic
intensity/electrotonic state, now calling it the “electromagnetic momentum”. His discussion
in sec. 57, p. 481 concerns the mechanical momentum Pmech of a unit charge q subject to
the electric field induced by a changing A,

dPmech

dt
= F = qE = −q

c

∂A

∂t
, Pmech = P0 − qA

c
. (16)

A charge q that somehow arrives at a point where the vector potential is A, it will have
extracted momentum −qA/c from the electromagnetic field. Supposing that all charges
(and possible other masses) started from rest, with zero total initial momentum, for momen-
tum to be conserved it must be that the field now stores momentum qA/c, leading to the
interpretation that A is a kind of electromagnetic momentum.

The total electromagnetic momentum stored in the field must be,

P
(M)
EM =

∑ qiAi

c
→

∫
ρA

c
dVol, (17)

where the superscript M indicates that this form is due to Maxwell.8

2.3.2 Electromagnetic Momentum of Charge Elements δq and δQ

From eq. (17), using the Darwin approximation (6) for the vector potential, the electromag-
netic momentum of the combined system of charges q1 and, q2 is,

PEM =
q1q2

2c2R
[v1 + v2 + (v1 · n̂) n̂ + (v2 · n̂) n̂], (18)

For the case of charge elements δq and δQ, where the latter is at rest, the electromagnetic
momentum is,

PEM =
δq δQ

2c2R
(vq + (vq · n̂)n̂) =

δq δQ

2c2R

(
vq +

vq · R
R2

R

)
(19)

5Maxwell noted on p. 59 of [12] that B = ∇×A, and that A can be subject to what is now called a gauge
transformation while leaving B unchanged, so he is free to set ∇ · A = 0, this being the first appearance
of the Coulomb gauge. On p. 62, Maxwell attributed an energy

∫
J · A dVol to the interaction of a current

density with the electro-tonic state, and on p. 64 he remarked that a changing A leads to an electric field
E = −(1/c)∂A/∂t (in Gaussian units, which we employ in this note), where c is the speed of light in vacuum.
On p. 73 he gives a sample computation of A for a sphere of radius a with a sin θ winding, finding that
Aφ = (rB0/2) sin θ for r < a and (a3B0/2r2) sin θ for r > a, where B0 is the uniform magnetic field inside
the sphere.

6Maxwell appears to have reversed the sign of A in [13] compared to the now-usual convention.
7Maxwell discusses the force on a unit charge on p. 342 of [13], giving in eq. (77) what is now called the

Lorentz force law.
8We note that Maxwell worked in the Coulomb gauge, where ∇ ·A = 0.

For other expressions for the electromagnetic momentum, see [15].
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Noting that R = Rq − RQ, we find,

dR

dt
= vq,

d

dt

1

R
= −vq · R

R3
,

d

dt

1

R2
=

2

R

d

dt

1

R
= −2vq · R

R4
, (20)

and the time rate of change of the electromagnetic momentum is,

dPEM

dt
= − δq δQ

2c2R3

(
vq(vq · R) +

(vq · R)2

R2
R

)

+
δq δQ

2c2R

(
v̇q +

v̇q · R
R2

R +
v2

q

R2
R +

vq(vq · R)

R2
− 2(vq · R)2

R4
R

)

=
δq δQ

2c2R

(
v̇q +

v̇q · R
R2

R +
v2

q

R2
R − 3(vq · R)2

R4
R

)
. (21)

We compare this to the self force on these charge elements, recalling the Darwin approx-
imation (7),

F = Fδq + FδQ = δqEδQ + δQEδq

= −δq δQ

2c2R

(
v̇q +

v̇q · R
R2

R − 3(vq · R)2 − v2
q

R4
R

)
= −dPEM

dt
. (22)

Since F = dPmech/dt, we have that the total momentum of the system is constant in time,

dPtotal

dt
=

dPmech

dt
+

dPEM

dt
= 0. (23)

Hence, it is not a violation of momentum conservation that there exists a nonzero axial force
on the system, as found in sec. 2.2.
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