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1 Problem

In 1870, Helmholtz made a review of electrodynamics, and in eq. (1), p. 76 of [8],1 he deduced
that a general form for the magnetic interaction energy (his P , but our UM ) of two current
elements (at x1 and x2), which are parts of closed circuits with steady currents, could be
written as a combination of forms he attributed to Neumann [1, 3] and to Weber [2, 4],2
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where k = 1 for Neumann’s form and k = −1 for Weber’s. Then, in eq. (1a) he argued that
the scalar UM is related to a vector potential (his (U, V, W ) but our A) as,3
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noting that I dl ↔ J dVol where J is the current density, and the vector potential is,
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although Neumann never wrote the form called AN here. Kirchhoff, p. 530 of [5], attributed
AW to Weber, who later transcribed Kirchhoff’s paper into sec. I.1. of [6], with AW appearing
on p. 578.4,5

1For comments by the author on this paper, see [18]. See also commentaries in [11]-[15].
2See also sec. IIB of [16], and [17]. The potential that Helmholtz associated with Weber was never

actually advocated by the latter, who had a somewhat different vision of magnetic energy, as discussed, for
example, in sec. A.23 of [19].

3To go from eq. (1) to (2) requires the assumption that ∇ · J = 0, i.e., that the current density J flows
in closed loops. Hence, if one considers isolated current elements, the form (3) does not follow from (1).

4Both AN and AW lead to the same magnetic field, B = ∇×AN = ∇×AW , which is an early example
of gauge invariance.

5Helmholtz’ discussion was tacitly restricted to electro- and magnetostatics, such that his eq. (3a), p. 80,
∇ · A = k dV/dt, where V is the instantaneous electric scalar potential, led him to identify k = 0 with
Maxwell’s theory [7] with its emphasis on ∇ ·A = 0. Maxwell was more interested in electrodynamics than
electro/magnetostatics, such that his only mention of the “Neumann” magnetostatic vector potential, our
eq. (7), was in his eq. (9), Art. 422 of [9].
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On pp. 119-120 of [8], Helmholtz considered the magnetisierenden Kräfte (L, M, N),
which we would call the magnetic field B = ∇ × A, with vector potential A from our
eq. (3). However, he was not able to use physical arguments to assign a value to the unknown
constant k.

Why couldn’t Helmholtz decide on a value for the parameter k in our eq. (3)?

2 Solution

This note was inspired by discussions with Chananya Groner and Tim Minteer.
If we take k = 1 in eq. (3), the magnetostatic vector potential has the now-standard form

(for steady currents in closed circuits),

AN(x) =
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where the form (7) is often called the Biot-Savart magnetic field.
If we take k = −1 in eq. (3), the magnetostatic vector potential is,

AW(x) =
μ0

4π

∫
(J(x′) · r) r

r3
dVol′, (8)

and the corresponding magnetic field is,
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recalling that ∇r = r/r = r̂ and ∇× r = 0.
Thus, both of Helmholtz’ vector potentials AN and AW correspond to the same magnetic

field B (and to the same magnetic interaction energy UM ), so the value of k is indeterminate.
This illustrates the concept of gauge invariance, that a physical field can correspond to

an infinite set of potentials, which was not well understood in 1870.6

A technicality of possible interest is that both the Neumann and the Weber vector poten-
tials (6) and (8) vanish at infinity for bounded distribution of current density, so the restric-
tion of vector potentials to those that vanish at infinity does not lead to a unique magnetic
vector potential for spatially bounded current distributions (whereas this restriction does
lead to a unique electric scalar potential for spatially bounded charge distributions).

6Maxwell showed beginnings of an awareness of this in secs. 96-99 of [7]. For a review of this topic, see
[16].
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A Appendix: Interaction Energy of Two Isolated

Current Elements (added May 28, 2021; inspired by T.M. Minteer)

The Maxwellian view of the energy associated with a magnetic field B is that it is given by,

UM =

∫ |B|2
2μ0

dVol. (10)

We consider the case of two current elements, I1 dl1 at x1 and I1 dl2 at x2.
If the observation point x is close enough to x1 and x1 that we can ignore effects of

retardation (i.e., effects of the finite speed of light), and we also ignore any radiation, we can
make the quasistatic approximation, that the magnetic field at x follows from the Biot-Savart
form,
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+
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. (11)

The magnetic energy associated with these two currents elements is,
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∫ |dB1|2
2μ0

dVol +
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where d2UM,i is the (infinite) self energy of current element i, and d2UM,12 is the interaction
energy between the two elements (which is finite if the current elements are at different
points),7
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r

, r = |r| = |x1 − x2| , (13)

which is Helmholtz’ form (1) with k = 0.
This result is intriguing, but should not be interpreted as “proving” that k = 0, or that

the magnetic vector potential A is Helmholtz’ form (3) with k = 0.8

Helmholtz’ forms hold only for examples in which the current elements are parts of closed
loops of steady currents, and do not hold for, say, pairs of moving electric charges, whose
fields involve effects of retardation and radiation.

It happens that Helmholtz did associate k = 0 with Maxwell’s electrodynamics, but for
different reasons (as discussed in footnote 4 above).9,10

7Thanks to T.M. Minteer, private communication, for verification of the volume integral in eq. (13) via
numerical integration with MathCad.

8Recall footnote 3 above.
9See also sec. IIB of [16].

10By 1870, Maxwell had used the Biot-Savart form for steady currents, but like Ampère and Helmholtz,
did not speculate about isolated current elements. At this time, only Weber pursued the study of the
interactions of moving electric charges, although in the late 1870’s Helmholtz sponsored the experiment of
Rowland [10] that first demonstrated a magnetic effect associated with moving electric charges (convection
currents).
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209 (1846), kirkmcd.princeton.edu/examples/EM/weber_aksgw_209_46.pdf
kirkmcd.princeton.edu/examples/EM/weber_aksgw_209_46_english.pdf
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