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1 Problem

A popular model at science museums (and also a science toy [1]) that
illustrates how curvature can be associated with gravity consists of a
surface of revolution r = −k/z with z < 0 about a vertical axis z. The
curvature of the surface, combined with the vertical force of Earth’s
gravity, leads to an inward horizontal acceleration of kg/r2 for a particle
that slides freely on the surface in a circular, horizontal orbit.

Consider the motion of a particle that slides freely on an arbitrary
surface of revolution, r = r(z) ≥ 0, defined by a continuous and dif-
ferentiable function on some interval of z. The surface may have a
nonzero minimum radius R at which the slope dr/dz is infinite. Dis-
cuss the character of oscillations of the particle about circular orbits to
deduce a condition that there be a critical radius rcrit > R, below which
the orbits are unstable. That is, the motion of a particle with r < rcrit

rapidly leads to excursions to the minimum radius R, after which the
particle falls off the surface.

Give one or more examples of analytic functions r(z) that exhibit a critical radius as
defined above. These examples provide a mechanical analogy as to how departures of gravi-
tational curvature from that associated with a 1/r2 force can lead to a characteristic radius
inside which all motion tends toward a singularity.

2 Solution

We work in a cylindrical coordinate system (r, θ, z) with the z axis vertical. It suffices to
consider a particle of unit mass.

In the absence of friction, there is no torque on a particle about the z axis, so the angular
momentum component J = r2θ̇ about that axis is a constant of the motion, where ˙ indicates
differentiation with respect to time.

For motion on a surface of revolution r = r(z), we have ṙ = r′ż, where ′ indicates
differentiation with respect to z. Hence, the kinetic energy can be written as,

T =
1

2
(ṙ2 + r2θ̇

2
+ ż2) =

1

2
[ż2(1 + r

′2) + r2θ̇
2
]. (1)

The potential energy is V = gz. Using Lagrange’s method, the equation of motion associated
with the z coordinate is,

z̈(1 + r
′2) + ż2r′r

′′
= −g +

J2r′

r3
. (2)
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For a circular orbit at radius r0, we have,

r3
0 =

J2r′0
g

. (3)

We write θ̇0 = Ω, so that J = r2
0Ω.

For a perturbation about this orbit of the form,

z = z0 + ε sinωt, (4)

we have, to order ε,

r(z) ≈ r(z0) + r′(z0)(z − z0)

= r0 + εr′0 sin ωt, (5)

r′ ≈ r′0 + εr
′′
0 sin ωt, (6)

1

r3
≈ 1

r3
0

(
1 − 3ε sinωt

r′0
r0

)
. (7)

Inserting (4-7) into (2) and keeping terms only to order ε, we obtain,

− εω2 sinωt(1 + r
′2
0 ) ≈ −g +

J2

r3
0

(
r′0 − 3ε sinωt

r
′2
0

r0
+ ε sinωt r

′′
0

)
. (8)

From the zeroeth-order terms we recover (3), and from the order-ε terms we find that,

ω2 = Ω2 3r
′2
0 − r0r

′′
0

1 + r
′2
0

. (9)

The orbit is unstable when ω2 < 0, i.e., when,

r0r
′′
0 > 3r

′2
0 . (10)

This condition has the interesting geometrical interpretation (noted by a referee) that the
orbit is unstable wherever,

(1/r2)′′ < 0, (11)

i.e., where the function 1/r2 is concave inwards.
For example, if r = −k/z, then 1/r2 = z2/k2 is concave outwards, ω2 = J2/(k2 + r4

0),
and there is no regime of instability.

We give three examples of surfaces of revolution that satisfy condition (11).
First, the hyperboloid of revolution defined by,

r2 − z2 = R2, (12)

where R is a constant. Here, r′0 = z0/r0, r
′′
0 = R2/r3

0, and,

ω2 = Ω2 3z2
0 −R2

2z2
0 + R2

= Ω2 3r2
0 − 4R2

2r2
0 − R2

. (13)
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The orbits are unstable for,
z0 <

√
3R, (14)

or equivalently, for,

r0 <
2
√

3

3
R = 1.1547R ≡ rcrit. (15)

As r0 approaches R, the instability growth time approaches an orbital period.
Another example is the Gaussian surface of revolution,

r2 = R2ez2

, (16)

which has a minimum radius R, and a critical radius rcrit = R 4
√

e = 1.28R.
Our final example is the surface,

r = − k

z
√

1 − z2
, (−1 < z < 0), (17)

which has a minimum radius of R = 2k, approaches the surface r = −k/z at large r (small
z), and has a critical radius of rcrit = 6k/

√
5 = 1.34R.

These examples arise in a 2 + 1 geometry with curved space but flat time. As such, they
are not fully analagous to black holes in 3 + 1 geometry with both curved space and curved
time. Still, they provide a glimpse as to how a particle in curved spacetime can undergo
considerably more complex motion than in flat spacetime.
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