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1 Problem

A popular model at science museums (and also a science toy [1]) that

illustrates how curvature can be associated with gravity consists of a _
surface of revolution r = —k/z with z < 0 about a vertical axis z. The
curvature of the surface, combined with the vertical force of Earth’s
gravity, leads to an inward horizontal acceleration of kg/r? for a particle
that slides freely on the surface in a circular, horizontal orbit.

Consider the motion of a particle that slides freely on an arbitrary
surface of revolution, r = r(z) > 0, defined by a continuous and dif-
ferentiable function on some interval of z. The surface may have a
nonzero minimum radius R at which the slope dr/dz is infinite. Dis-
cuss the character of oscillations of the particle about circular orbits to
deduce a condition that there be a critical radius 7. > R, below which
the orbits are unstable. That is, the motion of a particle with r < re.;
rapidly leads to excursions to the minimum radius R, after which the
particle falls off the surface.

Give one or more examples of analytic functions r(z) that exhibit a critical radius as
defined above. These examples provide a mechanical analogy as to how departures of gravi-
tational curvature from that associated with a 1/r? force can lead to a characteristic radius
inside which all motion tends toward a singularity.

2 Solution

We work in a cylindrical coordinate system (r, 6, z) with the z axis vertical. It suffices to
consider a particle of unit mass.

In the absence of friction, there is no torque on a particle about the z axis, so the angular
momentum component J = r26 about that axis is a constant of the motion, where * indicates
differentiation with respect to time.

For motion on a surface of revolution r = r(z), we have 7 = 7’2, where ' indicates
differentiation with respect to z. Hence, the kinetic energy can be written as,
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The potential energy is V' = gz. Using Lagrange’s method, the equation of motion associated
with the z coordinate is,
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For a circular orbit at radius ry, we have,
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We write fy = Q, so that J = 73Q.
For a perturbation about this orbit of the form,

z =z + esinwt, (4)
we have, to order ¢,
r(z) = r(20)+r"(20)(z — 20)

= 1o+ erjsinwt, (5)
o g+ er(/)/ sin wt, (6)
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Inserting (4-7) into (2) and keeping terms only to order €, we obtain,
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From the zeroeth-order terms we recover (3), and from the order-e terms we find that,

w2 = 230 T, (9)
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The orbit is unstable when w? < 0, i.e., when,
7"07"(/)/ > 37"(/)2. (10)

This condition has the interesting geometrical interpretation (noted by a referee) that the
orbit is unstable wherever,

(1/r*)" <0, (11)
i.e., where the function 1/r? is concave inwards.
For example, if r = —k/z, then 1/r* = 22/k? is concave outwards, w? = J?/(k? + r}),

and there is no regime of instability.
We give three examples of surfaces of revolution that satisfy condition (11).
First, the hyperboloid of revolution defined by,

r?— 2% = R, (12)
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where R is a constant. Here, 1 = zo/ro, ry = R%/r§, and,
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The orbits are unstable for,

2 < V3R, (14)
or equivalently, for,
23
ro < T\/_R = 1.1547R = 1o (15)
As ro approaches R, the instability growth time approaches an orbital period.
Another example is the Gaussian surface of revolution,
r? = R%e”, (16)
which has a minimum radius R, and a critical radius 7. = R+/e = 1.28R.
Our final example is the surface,
h (-1 <2<0) (17)
r=—-——— — z ,
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which has a minimum radius of R = 2k, approaches the surface r = —k/z at large r (small

z), and has a critical radius of 7. = 6]{:/\/5 = 1.34R.

These examples arise in a 2 4+ 1 geometry with curved space but flat time. As such, they
are not fully analagous to black holes in 3 + 1 geometry with both curved space and curved
time. Still, they provide a glimpse as to how a particle in curved spacetime can undergo

considerably more complex motion than in flat spacetime.
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