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1 Problem

This problem considers several ways of “matching” two transmission lines such that a wave
propagates from the first to the second line without reflection at the junction.

The related problem of “matching” a transmission line to a load is also considered to
some extent.

In this problem, a transmission line is a device consisting of two parallel conductors such
that TEM (transverse electromagnetic) waves can be propagated. Examples of transmission
lines include coaxial cables, and simple 2-wire (Lecher) lines.

Take the lines to lie along the x axis. Then, the two conductors carry currents I(x, t)
and −I(x, t), waves of angular frequency ω propagating in the +x direction have the form,

I(x, t) = I+ cos(kx− ωt) = Re(I+ei(kx−ωt)), which we abbreviate as I = I+ei(kx−ωt), (1)

where i =
√−1, k = 2π/λ is the wave number and ω/k is the wave velocity.1,2 Similarly,

waves propagating in the −x direction have the form,

I(x, t) = I−ei(−kx−ωt). (2)

A voltage difference V (x, t) exists between the two conductors, which is related to the
current in the conductors according to,

V = IZ, (3)

where Z is the impedance of the transmission line. A sign-convention is required for proper
use of eq. (3); we say that V+ = I+Z for waves propagating in the +x direction, while
V− = −I−Z for waves propagating in the −x direction.

If waves are propagating in both directions along a transmission line, then the voltage is
related to the current by,

V = V+ + V− = (I+ − I−)Z. (4)

1If the conductors are surrounded by vacuum, the wave velocity is c, the speed of light. If the conductors
are embedded in dielectric and/or permeable media with (relative) dielectric constant ε and (relative) per-
meability μ, the wave velocity is c/n where n =

√
εμ is the index of refraction. In this case, the wave number

can be written k = nω/c, and the wave length is λ = c/2πnω. If several different sections of transmission
line are present, they can have different indices, wave numbers and wave lengths for waves of a given angu-
lar frequency ω. While we ignore this possibility in the present note, it could be accommodated by minor
changes in notation.

2If the currents on the two conductors are not equal and opposite, then their average (I1 +I2)/2 is called
the common mode current. This case is generally undesirable as it involves transfer of energy to and from
the environment of the transmission line. We do not consider common mode currents in this problem.
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The transmission line may be assumed to operate in vacuum (rather than in a dielectric
that can support leakage currents). The capacitance and inductance per unit length along
the line are C and L, respectively. The resistance per unit length along the conductors is
negligible.

(a) Reflection Due to an Impedance Mismatch.

Suppose that two transmission lines are directly connected to each other, as illustrated
below for coaxial cables of impedances Z1 and Z2.

3

Show that the power transmitted into line 2 is given by,

P2 =
4Z1Z2

(Z1 + Z2)2
P1, (5)

where P1 is the power in line 1 that is incident on the junction. How much power is
reflected back down line 1?

(b) Reflection Due to a Complex Load Impedance.

Generalize part (a) to include the case that Z2 is a complex load impedance, rather than
a transmission line with a real impedance. Show that the ratio of the total voltage to
the total current in the input coaxial cable is real for a set of positions along the cable,
which permits matching at these points using the techniques considered in the rest of
this problem. A graphical representation of this insight uses the so-called Smith chart
[1]. For discussion of impedance matching of the voltage source to the transmission
line, see [2].

(c) Impedance Matching via Resistors.

Show that there will be no reflected wave from an incident in line 1 if an appropriate
resistor is placed at the junction. The case that Z2 > Z1 and Z2 < Z1 must be dealt
with separately if only a single resistor is to be used. Hence, this scheme for matching
works only when the waves are incident from line 1.

Because the resistors dissipate energy, the transmitted power is less than the inci-
dent power. Further, the resistive impedance matching scheme works only for waves
transmitted in one direction.

3The figure includes a load resistor of value R = Z2 at the end of transmission line 2. Without such
a load resistor there would be reflections off the end of line 2, and the analysis would need to be modified
accordingly.
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(d) A λ/4 Matching Section.

Show that the power can be transmitted without loss at a particular frequency ω from a
transmission line of impedance Z1 into one of impedance Z2 if the junction consists of a
piece of transmission line of length λ/4 and impedance Z0 =

√
Z1Z2. This prescription

is familiar from antireflection coatings on optical lenses.4

This scheme works for waves transmitted in either direction, but requires a precise
impedance for the matching section, which may not be readily available in practice.

Show also that a transmission line of impedance Z1 could be matched into a complex
load Z2 = R+iX with an appropriate length l �= λ/4 of transmission line of impedance
Z0, provided that R �= Z1.

(e) A “λ/12” Matching Section.

Show that power can be transmitted without loss at a particular frequency ω from a
transmission line of impedance Z1 into one of impedance Z2 if the transition consists
of two pieces of transmission line of equal lengths l ≈ λ/12 and impedance Z2 and Z1,
as sketched below.

This scheme works for waves transmitted in either direction, and can be built using
only pieces of the two transmission lines of interest. However, the matching is optimal
only at a single frequency.

The “λ/12” matching scheme was invented by P. Bramham in 1959 [4]. In 1971,
F. Regier [6] gave a generalization that permits matching a transmission line of (real)
impedance Z1 to a complex load impedance Z = R+ iX, where R is the load resistance
and X is the load reactance.

Given impedances Z, Z1 and Z2, deduce the lengths l1 and l2 of the matching sections.

When Z = Z2 is real, then the lengths of the matching sections are l1 = l2 =
(λ/4π) cos−1[(Z2

1 + Z2
2 )/(Z1 + Z2)

2], which is close to λ/12 = 0.08333λ as shown in
the figure below (from [5]).

4See, for example, prob. 5 of [3].

3



(f) Impedance Matching via a Flux-Linked Transformer.

Show that transmission lines 1 and 2 can be matched if each line is attached to a small
coil with N1 and N2 turns, respectively (as shown on the next page), where N1/N2 =√

Z1/Z2. All of the magnetic flux created by the current coil 1 should be linked by coil
2, and vice versa, for ideal transformer action. You may ignore the internal resistances
and capacitances of the transformer windings. Even with these idealizations, show
that a transmission-line analysis predicts a reflected power that varies as 1/ω2 (at high
frequency), so that a flux-linked transformer has poor performance at low frequency.

To maximize the flux linkage in practice, it is advantageous to wind the two coils
around a ring or “core” of a high-permeability magnetic material, such as a ferrite.
See, for example, [7]. However, the performance of magnetic materials is limited at
very high frequencies, so a ferrite-based, flux-linked, impedance-matching transformer
has only a finite bandwidth.

Lenz’ law indicates that the induced current in line 2 will have the opposite sign to
that in line 1. Hence, the voltage in lines 1 and 2 are reversed at their junction, and
we speak of an inverting transformer. A noninverting transformer could be built using
two ferrite cores, as shown in the figure below.

A matching transformer can be constructed with no metallic connection between the
conductors of line 1 and those of line 2. In this case we speak of an isolation transformer,
particularly when the impedance of lines 1 and 2 is the same.

There is some special terminology associated with isolation transformers, based on the
concepts of balanced and unbalanced transmission lines. In principle, a balanced trans-
mission line is one in which only a TEM wave propagates, and so the currents on its
two conductors are equal and opposite at each point along the line. Any transmission
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line can become unbalanced due to coupling with electromagnetic fields in its environ-
ment, but connecting one of the conductors to an electrical “ground” also unbalances
the line.5 An isolation transformer connected to an unbalanced line 1 can result in line
2 being balanced, and therefore the name balun (balanced-unbalanced) is sometimes
given to isolation transformers.

(g) The Transmission-Line Transformer of Guanella.

In 1944, Guanella [8] suggested a device that can match a (primary) transmission line
of impedance ZP to a (secondary) line of impedance ZS = 4ZP using two intermediate
pieces of transmission line of impedance ZI = 2ZP , as shown in the figure below.

Verify the desired functionality of this circuit, supposing that the intermediate segments
of transmission lines are long enough that TEM waves propagate in them. This has
the effect that the voltages at the two ends of these segments are isolated from one
another, because the integral

∫
E· dl along the line vanishes for a TEM mode.

For the above condition to hold, the intermediate segments need to be a wavelength
or more long, which may be inconvenient in practice. Guanella suggested that short
intermediate segments could be used if their conductors were wound into inductive
helices, rather than being simple straight wires. When his scheme was later applied to
coaxial cables, the inductive isolation was provided by looping the coax cable through a
ferrite core. This improves the low-frequency response of the device without changing
its basic principle.

Guanella’s device has come to be known as a transmission-line transformer even though it
does not involve any classic transformer action as first discovered by Faraday. Because
Guanella’s transmission-line transformer provides a measure of isolation between the
voltages at its two ends, it also serves as a balun. In some applications, the isolation is
more important than the impedance match.

Many variants of the transmission-line transformer have been conceived [9, 10, 11]. For
example, a piece of coax cable that passes through a ferrite core is called by some a
1:1 transmission-line transformer [12], although it might be more correct to call it a
balun.

5If the currents on the two conductors of a transmission line are labeled Ia and Ib, then we can write,

Ia =
Ia + Ib

2
+

Ia − Ib

2
≡ Icommon + ITEM, Ib =

Ia + Ib

2
− Ia − Ib

2
= Icommon − ITEM, (6)

where the antisymmetric currents are associated with TEM wave propagation, and the symmetric currents
are often called common mode currents. Note that the symbol ≡ means “is defined to be”.
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A more nontrivial variant is obtained if a second coaxial cable is attached to the first
(the one that passes through the ferrite core), with the conductors of the two cables
cross connected as shown below. In this case we obtain a 1:1 inverting transmission-line
transformer.

Show that if m intermediate segments of impedance ZI = 2ZP are used instead two,
shorting the inner and outer conductors of adjacent cables at their output ends, the
resulting transmission-line transformer makes a 1 : m2 impedance match (1 : m voltage
transformer).

If the intermediate transmission lines are shorted to one another at appropriate places
at their input ends as well as their output ends, additional transformer ratios may be
obtained. For example, if four intermediate sections of impedance ZI = (5/3)ZP are
connected as shown below, we can make a match to a secondary line of impedance
ZS = (25/9)ZP .

2 Solution

(a) Reflection Due to an Impedance Mismatch.

We first deduce the wave equations for current and voltage in a transmission line, and
then relate this to the concept of impedance.

To illustrate the steps in deducing the wave equation, we use figures based on a 2-wire
transmission line. Referring to the sketch below and recalling that L is the inductance
per unit length of the “loop” formed by the two lines, Kirchhoff’s rule for the circuit
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of length dx shown by dashed lines tells us,6

V (x) − V (x + dx) − (Ldx)
∂I

∂t
= 0, or − ∂V

∂x
= L

∂I

∂t
. (7)

Next, the charge dQ that accumulates on length dx of the upper wire during time dt is
(Cdx)dV in terms of the change of voltage dV between the wires and the capacitance
C per unit length between the two wires. The charge can also can be written in terms
of currents at the two ends of segment dx, so that,

Q = (Cdx)dV = (I(x)− I(x + dx))dt, so − ∂I

∂x
= C

∂V

∂t
. (8)

Together, eqs. (7) and (8) imply the desired wave equations,

∂2I

∂x2
= LC

∂2I

∂t2
,

∂2V

∂x2
= LC

∂2V

∂t2
. (9)

The well-known solutions for waves of angular frequency ω are that,

I = I±ei(±kx−ωt), V = V±ei(±kx−ωt), (10)

where the wave velocity v is,

v =
ω

k
=

1√
LC

. (11)

It can be shown that the capacitance C and inductance L for an arbitrary 2-conductor
line in vacuum obey the relation 1/

√
LC = c, where c is the speed of light.7

6Here, we apply Kirchhoff’s circuit law to a short segment of a transmission line. However, Kirchhoff’s
analysis does not well apply to transmission-line circuits that are large compared to a wavelength, as discussed
in [13].

7See, for example, pp. 16-17 of http://kirkmcd.princeton.edu/examples/ph501lecture13.pdf
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If we insert the solutions (10) in either of eqs. (8) or (9), we find that,

V± = ±
√

L

C
I± ≡ ±ZI±. (12)

Thus, the impedance of an ideal 2-conductor transmission line is the positive real
number given by,

Z =

√
L

C
. (13)

The time-average power carried by either the + or the − wave is given by,

P± =
Re(V±I�

±)

2
=

V±I±
2

= ±ZI2
±

2
= ±V 2

±
2Z

, (14)

where the sign of the power indicates the direction of propagation of the wave along
the x axis.

After these lengthy preliminaries, we return to the question of the power transmitted
across the junction between transmission lines of impedances Z1 and Z2.

Assuming that the incident wave arrives from x = −∞ on line 1, this wave is described
by current and voltage I1+ and V1+ = I1+Z1. At the junction with line 2, the incident
wave splits into a transmitted wave described by current and voltage I2+ and V2+ =
I2+Z2, and a reflected wave described by current and voltage I1− and V1− = −I1−Z1.

Both current and voltage are continuous at the junction, so we have,

V2+ = V1+ + V1−, (15)

I2+ = I1+ + I1−. (16)

Using eq. (12) to eliminate the voltages in favor of the currents, eq. (15) becomes,

I2+
Z2

Z1

= I1+ − I1−. (17)

Solving eqs. (16) and (17) we find,

I1− =
Z1 − Z2

Z1 + Z2
I1+, I2+ =

2Z1

Z1 + Z2
I1+. (18)

So, whenever there is an impedance mismatch, i.e., whenever Z1 �= Z2, there is a
reflected wave created by the junction.

Using eq. (14) we calculate the reflected and tranmitted power to be,

P1− =

(
Z1 − Z2

Z1 + Z2

)2

P1+, P2+ =
4Z1Z2

(Z1 + Z2)2
P1+. (19)

These powers obey P1− + P2+ = P1+, which also follows from conservation of energy
at the junction, which has been assumed to be lossless.

8



(b) Reflection Due to a Complex Load Impedance.

The analysis of eqs. (15)-(18) does not actually depend on the assumption that the
impedances Z1 and Z2 are real numbers. For the case of complex impedances, eq. (14)
becomes P± = ±Re(Z) |I±|2 /2, so that the generalization of eq. (19) for Z1 real but
Z2 complex is,

P1− =

∣∣∣∣Z2 − Z1

Z2 + Z1

∣∣∣∣
2

P1+, P2+ =
4Z1 Re(Z2)

|Z2 + Z1|2
P1+. (20)

The first of eq. (18) is often rewritten as,

Ir =
1 − Z2/Z1

1 + Z2/Z2
Ii =

1 − z

1 + z
Ii ≡ −γIi, (21)

where subscript i means incident, subscript r means reflected, z = Z2/Z1 is the normal-
ized load impedance, and,

γ =
z − 1

z + 1
(22)

is the complex voltage reflection coefficient, since Vr = γVi according to the sign con-
vention (12). We note that,

z =
1 + γ

1 − γ
. (23)

At a point x < 0 on line 1, the total voltage is,8

V1(x, t) = V1+ ei (kx−ωt) + V1−ei(−kx−ωt) = Z1I1+(eikx + γe−i kx)e−i ωt, (26)

and the total current is,

I1(x, t) = I1+ei(kx−ωt) + I1−ei(−kx−ωt) = I1+(ei kx − γe−i kx)e−i ωt, (27)

8A practical diagnostic of the modulated traveling wave (26) can be obtained by placing a “square-law”
detector across the transmission line at position x, which measures the DC root-mean-square (rms) voltage,

Vrms(x) =

√
Re(V1V �

1 )
2

= V1+

√
1 + |γ|2 + 2 |γ| cos(φ − 2kx)

2
, (24)

where we write the complex reflection coefficient (22) as γ = |γ| eiφ. The maxima and minima of Vrms(x)
occur at values of x separated by λ/4 and have magnitudes V1+(1±|γ|)/√2. The ratio of the maximum rms
voltage to the minimum is called the VSWR,

VSWR =
1 + |γ|
1 − |γ| . (25)

VSWR is an acronym for voltage standing wave ratio, although strictly speaking the waveform (26) is not a
pure standing wave unless γ = 1. An applet that illustrates the waveform (26) for real values of γ is available
at http://www.bessernet.com/Ereflecto/tutorialFrameset.htm.

Note that
√

2Vrms(x) is the envelope of the waveform V1(x, t).
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We introduce the complex, position-dependent impedance Z(x) defined so that V1(x, t) =
I1(x, t)Z(x),

Z(x) = Z1
1 + γe−2i kx

1 − γe−2i kx
. (28)

If line 1 were terminated at position x by a load of impedance Z(x), the reflected wave
would be just the same as when the line is terminated at x = 0 by impedance Z2.

As a check, note that Z(0) = Z1(1 + γ)/(1 − γ) = Z1z = Z2 using eq. (23).

If Z(x) is real, then a “match” could be made at position x using techniques appropriate
for real, i.e., purely resistive, loads as considered in parts (c) and (d). From eq. (28)
we see that Z(x) will be real if γe−2i kx is real also. After some algebra, we find the
desired value(s) of x to be,

x =
λ

4π
tan−1

(
2 Im(z)

1 − |z|2
)

=
λ

4π
tan−1

(
2Z1 Im(Z2)

Z2
1 − |Z2|2

)
=

λ

4π
tan−1

(
2Z1X2

Z2
1 −R2

2 − X2
2

)
,

(29)
where we write Z2 = R2 + i X2. Recall that we desire x to be negative, so we rewrite
eq. (29) as,

− x =
λ

4π
tan−1

(
2Z1X2

R2
2 + X2

2 − Z2
1

)
, (30)

so that we can use the smallest positive value of the arctangent as our solution.

As expected, if the load reactance X2 is zero, we obtain x = 0 as the position closest
to the load at which the impedance Z(x) is real.

The real value of the impedance Z(x) for x given by eq. (30) is,

Z(x) = Z1

√
Z2

1 + R2
2 + X2

2 + 2Z1R2 −
√

Z2
1 + R2

2 + X2
2 − 2Z1R2√

Z2
1 + R2

2 + X2
2 + 2Z1R2 +

√
Z2

1 + R2
2 + X2

2 − 2Z1R2

. (31)

If X2 = 0 then according to eq. (31), Z(x) = R2 as expected.

The Smith Chart.

Before computers and pocket calculators were common, P.H. Smith [1] gave a graphical
method for finding the values of x for which Z(x) is real, as well as the real values for
Z(x).

Converting eq. (28) to a normalized impedance, we write,

z(x) =
1 + γe−2i kx

1 − γe−2ikx
=

z + i tan(kx)

1 + i z tan(kx)
, (32)

using eq. (22). We can also define a complex, position-dependent reflection coefficient
according to,

γ(x) =
z(x) − 1

z(x) + 1
= γe−2i kx = |γ| ei(φγ−2kx). (33)
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The complex, position-dependent reflection coefficient γ(x) moves in a circle of radius
|γ| ≤ 1 on the complex plane, and completes one clockwise rotation around this circle
when x increases by λ/2. This insight is represented graphically on a so-called Smith
chart, with is a plot of the complex reflection coefficient γ = u + i v on the complex
u-v plane.

For ease of use, curve of constant resistance R2 and constant reactance X2 are also
shown on the Smith chart, for a specified value of the (real) impedance Z1. For this,
we write,

z =
R2 + i X2

Z1

=
1 + γ

1 − γ
=

1 + u + i v

1 − u − i v
=

1 − u2 − v2 + 2i v

(u − 1)2 + v2
. (34)

Thus,
R2

Z1
=

1 − u2 − v2

(1 − u)2 + v2
and

X2

Z1
=

2v

(1 − u)2 + v2
. (35)

Bringing all u’s and v’s into the numerator and rearranging terms a bit, we find,(
u − R2

Z1 + R2

)2

+ v2 =

(
Z1

Z1 + R2

)2

and (u− 1)2 +

(
v − Z1

X2

)2

=

(
Z1

X2

)2

.

(36)
These are both equations of circles. In particular, circles of constant R2 have their
center on the u (horizontal) axis, and these circles all pass through the point (u, v) =
(1, 0). Circles of constant X2 all have their centers on the vertical line u = 1, and these
circles also all pass through the point (u, v) = (1, 0).
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In the Smith chart above,9 the transmission line impedance is Z1 = 50Ω and the load
impedance is Z2 = 25 + i 25Ω. We plot Z2 using the two sets of circles of constant
resistance and constant reactance to locate this point, which happens to correspond
to the complex reflection coefficient γ = 0.45ei 117◦. The circle of |γ| = 0.45 crosses
the real axis at points corresponding to Z(x) = 19 Ω if we move 180 − 117 = 63◦

counterclockwise from Z2, and to Z(x) = 130 Ω if we move counterclockwise by 243◦.
The corresponding distances along the coaxial cable are x = (λ/2)(63/360) = 0.05λ,
and x = (λ/2)(243/360) = 0.34λ.

We leave it to the reader to judge whether the graphic construction is more or less
convenient than using the algebraic relations (30)-(31). Either way, one could “match”
the complex load impedance Z2 to the coaxial cable of impedance Z1 by cutting into
the cable at position x and adding an appropriate matching resistor either in series
or parallel, depending on whether Z(x) is greater or less than Z1, as discussed in the
following section.

(c) Impedance Matching via Resistors.

According to eq. (18) or (19), there will be no reflected wave at a junction if the total
impedance beyond the junction is the same as that before the junction.

So, if Z2 < Z1, placing a resistor of value R = Z1 − Z2 in series with line 2 brings the
impedance beyond the junction to Z1, and no reflection will occur.

The currents in both lines are equal: I1+ = I2+. However, the series resistance reduces
the voltage in line 2 to,

V2+ = I2+Z2 = I1+Z2 =
Z2

Z1

V1+. (37)

Hence, the transmitted power is,

P2+ =
V2+I2+

2
=

Z2

Z1

V1+I1+

2
=

Z2

Z1
P1+ (Z2 < Z1). (38)

Similarly, if Z2 > Z1, then the impedance beyond the junction can be reduced to Z1

by adding a resistor in parallel (i.e., between the two conductors at the junction) of
value R given by,

1

R
=

1

Z1
− 1

Z2
, so that R =

Z1Z2

Z2 − Z1
. (39)

In this case the voltages on the two lines are equal, V2+ = V1+, while the currents are
related by,

I2+ =
V2+

Z2
=

V1+

Z2
=

Z1

Z2
I1+, (40)

and the transmitted power is only,

P2+ =
V2+I2+

2
=

Z1

Z2

V1+I1+

2
=

Z1

Z2
P1+ (Z2 > Z1). (41)

9The Smith chart was generated using the Smith V2.03 software package available at
http://www.fritz.dellsperger.net/
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(d) A λ/4 Matching Section.

We suppose that the transmission line of impedance Z1 occupies the region x < 0, the
transition section of impedance Z0 runs from x = 0 to x = l, and the line of impedance
Z2 extends over the region x > l.

The incident wave in line 1 moves in the +x direction, and we desire no reflected wave
this line. The matching section can support waves in both direction, while the wave
in line 2 should move only in the +x direction.

We can write the various waves as,10

V1+ = V1+ei(kx−ωt) = I1+Z1, (42)

V0+ = V0+ei(kx−ωt) = I0+Z0, (43)

V0− = V0−ei(−kx−ωt) = −I0−Z0, (44)

V2+ = V2+ei(kx−ωt) = I2+Z2. (45)

Continuity of the current and voltage at the junction x = 0 tells us that,

I1+ = I0+ + I0−, (46)

V1+ = V0+ + V0−. (47)

Eliminating voltage in favor of current in eq. (47), we have,

I1+
Z1

Z0
= I0+ − I0−. (48)

Solving eqs. (46) and (48), we find the currents in the matching section to be,

I0± =
Z0 ± Z1

2Z0

I1+. (49)

Similarly, continuity of the current and voltage at the junction x = l tells us that,

I0+eikl + I0−e−ikl = I2+eikl, (50)

V0+eikl + V0−e−ikl = V2+eikl. (51)

Eliminating voltage in favor of current in eq. (51), we have,

Z0

Z2
(I0+eikl − I0−e−i kl) = I2+ei kl. (52)

Using eq. (49) in eq. (50), we find current I2+ to be,

I2+ei kl =
(Z0 + Z1)e

ikl + (Z0 − Z1)e
−i kl

2Z0
I1+, (53)

10It is not necessary to represent the behavior in line 2 as a traveling wave; all that is needed for the
analysis is the relation V2+ = I2+Z2. Line 2 could be replaced by a resistor of value R = Z2.
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while using eq. (49) in eq. (52), we find,

I2+eikl =
(Z0 + Z1)e

ikl − (Z0 − Z1)e
−ikl

2Z2
I1+. (54)

Combining eqs. (53) and eq. (54), we must have,

Z0Z2 + Z1Z2 − Z2
0 − Z0Z1 = −(Z2

0 − Z0Z1 + Z0Z2 − Z1Z2)e
−2i kl. (55)

Since the impedances Zi are real, eq. (55) can be consistent only if e−2ikl is real also.
The options are e−2i kl = ±1, corresponding to length l of the matching section being
even or odd integer multiples of λ/4, recalling that k = 2π/λ. When l = mλ/2 for
integer m, we can have only the trivial case that Z1 = Z2 (for any value of Z0).

The nontrivial solution is that l = mλ/4 for odd integer m, in which case eq. (55)
reduces to the condition that,

Z2
0 = Z1Z2, Z0 =

√
Z1Z2. (56)

We now explore the option that Z2 = R+ iX is a load with complex impedance rather
than a transmission line with real impedance. The analysis up to and including eq. (55)
holds whether Z2 is real or complex. So, in the latter case we multiply eq. (55) by eikl

and rearrange it to find,

Z0(Z1 − Z2) = i tan(kl)(Z1Z2 − Z2
0 ), (57)

and substituting Z2 = R + iX, we have,

Z0(Z1 −R) + Z1X tan(kl) = i[Z1X + tan(kl)(Z1R − Z2
0)]. (58)

The lefthand side of eq. (58) is real while the righthand side is imaginary. Therefore,
both sides must vanish, which requires that,

tan(kl) =
Z0(R − Z1)

Z1X
=

Z1X

Z2
0 − Z1R

. (59)

Thus, the impedance Z0 obeys the cubic equation,

Z3
0 − Z1RZ0 − Z2

1X
2

R − Z1

= 0. (60)

So long as R does not equal Z1 there is at least one real solution for Z0. The three
roots of the cubic equation (60) are,

Z0 = A+ + A−, −A+ + A−
2

+ ±i
√

3
A+ −A−

2
(61)

where,

A± = 3

√√√√√ Z2
1X2

2(R − Z1)

⎛
⎝1 ±

√
1 − 4

27

R3(R − Z1)2

Z1X4

⎞
⎠. (62)

Of course, the solution could be implemented with a physical transmission line only if
Z0 is both real and positive.
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(e) A “λ/12” Matching Section.

We analyze the more general case of a load impedance Z = R + iX.

The input line of impedance Z1 extends over the region x < 0. This connects to the
first matching section, of impedance Z2 and length l2, followed by the second matching
section, of impedance Z1 and length l1. The load impedance is located at x = l1 + l2.

We desire that the wave in the input line 1 be only in the +x direction. In the matching
sections there are waves moving in both directions. These waves can be written as,

V1+ = V1+ei(kx−ωt) = I1+Z1, (63)

V2+ = V2+ei(kx−ωt) = I2+Z2, (64)

V2− = V2−ei(−kx−ωt) = −20−Z2, (65)

V ′
1+ = V ′

1+ei(kx−ωt) = I ′
1+Z1, (66)

V ′
1− = V ′

1−ei(kx−ωt) = I ′
1−Z1, (67)

where the currents and voltages I ′
1± and V ′

1± refer to the matching section of impedance
Z1. The current and voltage in the load are related by V = IZ.

The analysis proceeds as in part (c). Continuity of the current and voltage at the
junction x = 0 tells us that,

I1+ = I2+ + I2−, (68)

V1+ = V2+ + V2−. (69)

Eliminating voltage in favor of current in eq. (69), we have,

I1+
Z1

Z2
= I2+ − I2−. (70)

Solving eqs. (68) and (70), we find the currents in the matching section to be,

I2± =
Z2 ± Z1

2Z2

I1+. (71)

Similarly, continuity of the current and voltage at the junction x = l2 tells us that,

I2+eikl2 + I2−e−ikl2 = I ′
1+eikl2 + I ′

1−e−ikl2, (72)

V2+eikl2 + V2−e−ikl2 = V ′
1+eikl2 + V ′

1−e−ikl2. (73)

Eliminating voltage in favor of current in eq. (73), we have,

Z2

Z1
(I2+ei kl2 − I2−e−i kl2) = I ′

1+ei kl2 − I ′
1−e−i kl2. (74)

Solving eqs. (72) and eq. (74), and using eq. (71), we find,

I ′
1+ =

(Z1 + Z2)I2+ + (Z1 − Z2)I2−e−2ikl2

2Z1
=

(Z1 + Z2)
2 − (Z1 − Z2)

2e−2ikl2

4Z1Z2
I1+, (75)
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I ′
1− =

(Z1 − Z2)I2+e2ikl2 + (Z1 + Z2)I2−
2Z1

=
Z2

1 − Z2
2

4Z1Z2
(e2ikl2 − 1)I1+. (76)

Finally, continuity of the current and voltage at the junction x = l1 + l2 tells us that,

I ′
1+eik(l1+l2) + I ′

1−e−ik(l1+l2) = I, (77)

V ′
1+eik(l1+l2) + V ′

1−e−ik(l1+l2) = V. (78)

Eliminating voltage in favor of current in eq. (78), we have,

Z1

Z
(I ′

1+eik(l1+l2) − I ′
1−e−ik(l1+l2)) = I. (79)

Substituting eqs. (75) and (76) in eq. (77), we find,

I =
(Z1 + Z2)

2eik(l1+l2) − (Z1 − Z2)
2eik(l1−l2) + (Z2

1 − Z2
2)(e

−ik(l1−l2) − e−ik(l1+l2))

4Z1Z2
I1+,

(80)
while from eq. (79) we find,

I =
(Z1 + Z2)

2eik(l1+l2) − (Z1 − Z2)
2eik(l1−l2) − (Z2

1 − Z2
2 )(e−ik(l1−l2) − e−ik(l1+l2))

4ZZ2
I1+,

(81)
Consistency of eqs. (80) and (81) requires that,

(Z − Z1)
[
(Z1 + Z2)

2eik(l1+l2) − (Z1 − Z2)
2eik(l1−l2)

]
= −(Z + Z1)(Z

2
1 − Z2

2 )(e−ik(l1−l2) − e−ik(l1+l2)). (82)

We first consider the case that Z = Z2 and is therefore real, since Z2 is the (real)
impedance of a section of transmission line. Then, we can divide eq. (82) by Z2 − Z1

to obtain,

(Z1 + Z2)
2eik(l1+l2) − (Z1 − Z2)

2eik(l1−l2) = (Z2
1 + Z2

2 )(e−ik(l1−l2) − e−ik(l1+l2)), (83)

which we rearrange as,

(Z1 + Z2)
2(eik(l1+l2) + e−ik(l1+l2)) = (Z1 − Z2)

2eik(l1−l2) + (Z1 + Z2)
2e−ik(l1−l2), (84)

and so,

(Z1 + Z2)
2 cos[k(l1 + l2)] = (Z2

1 + Z2
2 ) cos[k(l1 − l2)] + iZ1Z2 sin[k(l1 − l2)]. (85)

Since the lefthand side of eq. (85) is real, we must have that sin[k(l1 − l2)] = 0, which
is most simply satisfied by taking,

l1 = l2 ≡ l (Z = Z2). (86)

Then, the real part of eq. (85) become,

cos(2kl) = cos
4πl

λ
=

Z2
1 + Z2

2

(Z1 + Z2)2
(Z = Z2). (87)
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For Z1 ≈ Z2, the righthand side of eq. (87) is close to 1/2, so 4πl/λ ≈ π/3, and,

l ≈ λ

12
(Z = Z2). (88)

Returning to the case of matching into a load impedance of Z = R + i X, we rewrite
eq. (82) as,

(R − Z1 + i X)ei kl1
[
(Z1 + Z2)

2ei kl2 − (Z1 − Z2)
2e−i kl2

]
= −(R + Z1 + i X)e−ikl1(Z2

1 − Z2
2)(e

ikl2 − e−ikl2), (89)

and further as,

(R − Z1 + iX)ei kl1
[
2Z1Z2 cos(kl2) + i(Z2

1 + Z2
2 ) sin(kl2)

]
= −i(R + Z1 + i X)e−i kl1(Z2

1 − Z2
2 ) sin(kl2). (90)

Since the length l1 appears only as a phase factor, we can eliminate it by taking the
absolute square of eq. (90). Thus,

[(R − Z1)
2 + X2]

[
4Z2

1Z2
2 cos2(kl2) + (Z2

1 + Z2
2 )2 sin2(kl2)

]
= [(R + Z1)

2 + X2](Z2
1 − Z2

2 )2 sin2(kl2), (91)

and hence,

tan2(kl2) =
4Z2

1Z2
2 [(R − Z1)

2 + X2]

[(R + Z1)2 + X2](Z2
1 − Z2

2 )2 − [(R − Z1)2 + X2](Z2
1 + Z2

2)
2

=
(R − Z1)

2 + X2

RZ1

(
Z2

Z1
− Z1

Z2

)2

− (R − Z1)2 − X2

. (92)

The righthand side of eq. (92) must be positive, so if (R−Z1)
2 +X2 is large, the ratio

Z2/Z1 must be large also.

To determine the length l1 we return to eq. (90) and equate the phases of the lefthand
and righthand sides. Thus,

tan−1 X

R − Z1
+ kl1 + tan−1

(
Z2

1 + Z2
2

2Z1Z2
tan(kl2)

)
= −π

2
+ tan−1 X

R + Z1
− kl1, (93)

so that,

2kl1 = −π

2
+ tan−1 X

R + Z1
− tan−1 X

R − Z1
− tan−1

(
Z2

1 + Z2
2

2Z1Z2
tan(kl2)

)
. (94)

If the righthand side of eq. (94) is negative, add as many 2π’s as are needed to make
it positive.
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Other expressions for l1 can be given. Regier [6] prefers the form,

tan(kl1) =

(
Z2 − RZ1

Z2

)
tan(kl2) + X

R − Z1 + X Z2

Z1
tan(kl2)

. (95)

We can verify that Bramham’s impedance matching scheme is a special case of eqs. (92)
and (95) when Z = Z2, i.e., when R = Z2 and X = 0. Then, eq. (95) reduces to
tan(kl1) = tan(kl2), so that l1 = l2 ≡ l. Further, eq. 92) reduces to,

tan2(kl) =
Z1Z2

Z2
1 + Z1Z2 + Z2

2

, (96)

so that,

sin2(kl) =
Z1Z2

(Z1 + Z2)2
and cos2(kl) =

Z2
1 + Z1Z2 + Z2

2

(Z1 + Z2)2
, (97)

and finally,

cos(2kl) = cos2(kl)− sin2(kl) =
Z2

1 + Z2
2

(Z1 + Z2)2
(Z = Z2), (98)

as found in eq. (87).

The quarter-wave matching scheme of part (c) is also a special case of eqs. (92) and (95)
where Z = R is real and Z2 =

√
ZZ1. Then, eq. (95) tells us that tan(kl1) = 0, so that

the second matching section is not needed. And, eq. (92) tells us that tan(kl2) = ∞,
so kl2 = π/2 and l2 = λ/4.

(f) Impedance Matching via a Flux-Linked Transformer.

The coils 1 and 2 of the flux-linked transformer have self inductances L1 and L2 and
mutual inductance M .

We first relate these inductances to the numbers of turns in the coils. Suppose that
current I1 creates magnetic flux Φ0 in a single turn of coil 1,

Φ0 =

∫
B0dArea = L0I1, (99)

where B0 is the magnetic field due to a single turn, and L0 is the self inductance of a
single turn. If coil 1 contains N1 turns, then the total magnetic field is N1B0, and the
total flux due to current I1 that is linked by coil 1 is,

Φ1 = N2
1 L0I1 ≡ L1I1, (100)

assuming that all the flux from each turn of the coil passes through all of the other
turns as well. Winding the turns around a ferrite core helps to make this assumption
valid.

18



Similarly for coil 2, the flux Φ2 that it links due to its own current I2 is related by,

Φ1 = N2
1 L0I2 ≡ L2I2. (101)

We also suppose that all the flux created by coil 1 is linked by coil 2, and vice versa,

Φ12 = N1N2L0I1 ≡ MI1, and likewise Φ21 = N2N1L0I2 ≡ MI2. (102)

In sum, the inductances are related by,

L1 = N2
1 L0, L2 = N2

2 L0, M = N1N2L0. (103)

In general, the self and mutual inductances of two coils obey the inequality L1L2 ≥ M2,
but in the ideal case (103) we have,

L1L2 = M2. (104)

We now perform a “circuit analysis” of the transformer, being careful to note that
line 1 can contain waves that move in either direction, corresponding to currents I1±
and voltages V1± = ±I1±Z1, while line 2 carries only a wave moving away from the
transformer (assuming that line 2 is properly terminated elsewhere). Then, the voltage
across coil 1 obeys,

V1 = (I1+ − I1−)Z1 = L1((İ1+ − İ1−) + Mİ2 = −iωL1(I1+ − I1−) − iωMI2. (105)

For coil 2 we note that our convention for directions of currents implies that the current
I2 flows through coil 2 in the opposite sense to the flow of current I1 through coil 1.
Hence, the voltage across coil 2 is related by,

V2 = I2Z2 = −M((İ1+ − İ1−) − L2İ2 = iωM(I1+ − I1−) + iωL2I2. (106)

We rearrange eqs. (105) and (106) to emphasize that we wish to solve for currents I1−
and I2 in terms of I1+,

(Z1 − iωL1)I1− − iωMI2 = (Z1 + iωL1)I1+, (107)

−iωMI1− + (Z2 − iωL2)I2 = iωMI1+. (108)

The determinant of the coefficients of the lefthand side is,

Δ = Z1Z2 + ω2(M2 − L1L2) − iω(L1Z2 + L2Z1) = Z1Z2 − iω(L1Z2 + L2Z1), (109)

recalling eq. (104). Solving for I1−, we find,

I1− =
Z1Z2 + iω(L1Z2 − L2Z1)

Δ
I1+. (110)

To minimize the reflected current, we must have,

L1Z2 = L2Z1, (111)
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and hence eq. (103) tells us that the ratio of the number of turns in the transformer
coils must be,

N1

N2

=

√
Z1

Z2

. (112)

The reflected current is then,

I1− =
Z1Z2

Z1Z2 − 2iωL1Z2
I1+ ≈ i

Z1

ωL1
I1+, (113)

where the approximation holds for high frequencies. The reflected power, P1− =
I2
1−Z1/2 varies as 1/ω2 at high frequencies, but for low frequencies I1− ≈ I1+ and

all the power is reflected rather than transmitted by the transformer.

The current I2 is given by,

I2 =
2iωMZ1

Z1Z2 − 2iωL1Z2
I1+ ≈ −MZ1

L1Z2
I1+ = −N2Z1

N1Z2
I1+ = −

√
Z1

Z2
I1+, (114)

where the approximation holds at high frequencies, for which the transmitted power
I2
2Z2/2 equals the incident power I2

1+Z1/2 as desired. The minus sign in eq. (114)
reminds us that the flux-linked transformer inverts the currents and voltages.

(g) The Transmission-Line Transformer of Guanella.

To analyze the 1:2 voltage (1:4 impedance) transmission-line transformer of Guanella,
it is helpful to identify seven points, a, b, c, d, e, f and g, in the circuit as shown in
the figure below.

Then, the voltage Vab between points a and b is,

Vab = IPZP . (115)

The primary transmission line is connected in parallel to two intermediate transmission
lines of equal impedance, so the current in each of the intermediate lines, ac and ad,
is,

II =
IP

2
. (116)

The center conductor ac of the upper intermediate line connects directly to the center
conductor cf of the secondary line, so we have,

IS = II =
IP

2
. (117)
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The voltage difference Vcd between the center conductor and the outer conductor of
the upper intermediate line is equal to the voltage difference Vab across the primary
line. Likewise, the voltage difference Vde across the lower intermediate line is equal to
Vab,

Vcd = Vde = Vab. (118)

Because the outer conductor of the upper intermediate line is shorted to the inner
conductor of the lower intermediate line, we have,

Vce = Vcd + Vde = 2Vab. (119)

And, the voltage difference VS = Vfg across the secondary line is equal to Vce. Hence,
the impedance ZS of the secondary line should be,

ZS =
VS

IS
=

Vce

IP/2
=

2Vab

IP/2
=

2IPZP

IP/2
= 4ZP . (120)

Similarly, the impedance ZI of the intermediate lines is given by,

ZI =
Vcd

II
=

Vab

IP/2
=

IPZP

IP/2
= 2ZP . (121)

The above analysis tacitly assume that the voltages at points a and d are not equal,
even though these points are connected by a conductor. While these voltages would
be equal in a DC circuit, they need not be equal at points a and d which are separated
by transmission lines that carry TEM waves. However, if the intermediate lines are
too short, the fields in these lines will not be purely TEM, and the voltages at the two
ends will not be independent of one another. This is the case when the length L of the
intermediate lines is less than a wavelength, so we expect that Guanella’s scheme fails
at low frequencies, ω <∼ c/L. The addition of inductive isolation, either via external
ferrite cores or by winding the intermediate conductors into choke coils, will improve
the low-frequency performance of a transmission-line transformer.

If there had been m intermediate lines of equal impedance ZI = mZP , then the inter-
mediate currents would all be II = IP/m. The voltage across each of the intermediate
lines would still be VI = VP = IPZP , since they are connected in parallel to the
primary line. If the center and outer conductors of adjacent intermediate lines were
shorted together, then the total maximum voltage between intermediate conductors is
mVI = mVP = mIPZP . Since this is also the voltage delivered to the secondary line,
we have VS = mVP , and we have a 1:m voltage transformer. The (matched) impedance
of the secondary line is therefore,

ZS =
VS

IS
=

mIPZP

IP/m
= m2ZP . (122)

The figures below illustrate 1:3 and 1:4 voltage transmission-line transformers.
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When three intermediate lines are used there is another arrangement possible, illus-
trated below, which provides a 2:3 voltage transformer. When four intermediate lines
are user there are two additional arrangements, one of which provides a 3:5 voltage
transformer, as illustrated below. See also [9, 10, 11].
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