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1 Problem

When an electromagnetic wave in a medium with index of refraction n1 encounters an inter-
face with a region of index n2 < n1 the wave can be totally reflected, with only an evanescent
(surface) wave excited in the region of lower index. In this case, energy is (largely) trans-
ported parallel to the interface in the region of lower index.1

Discuss the flow of energy when the incident wave has limited transverse extent. In
particular, consider a weakly focused, linearly polarized Gaussian beam that is incident
from the medium with lower index.

Also discuss the flow of energy when a Gaussian beam is incident from a medium of index
n1 onto a region of index n2 < n1 of thickness d beyond which the medium has index n1.

2 Solution

We will use the time-average Poynting vector, 〈S〉 = Re(E×B�)/2μ (in SI units), to discuss
the flow of energy in waves with electric field E and magnetic field B.

2.1 Weakly Focused, Linearly Polarized Gaussian Optical Beams

We use so-called Gaussian beams to describe approximate wave solutions to Maxwell’s equa-
tions that have limited transverse extent. However, even if the incident beam is cylindrically
symmetric about its axis of propagation, the refracted beam will in general have an elliptical
cross section. Hence, in Appendix A we make a small generalization of typical presenta-
tions of Gaussian beams (see, for example, sec. 2.4 of [1]) to consider elliptical beams. The
first-order Gaussian beam of angular frequency ω that propagates along the z-axis with

1See, for example, prob. 11 of http://kirkmcd.princeton.edu/examples/ph501set6.pdf

1



y-polarization in a medium with permittivity ε and permeability μ has fields,

Ex ≈ 0,

Ey ≈ E0 e
−ρ2/(1+z2/z2

0)√
1 + z2/z2

0

ei{kz[1+z0ρ2/k(z2+z2
0 )]−ωt−tan−1(z/z0)}, (1)

Ez ≈ − 2iy

kw2
0y

Ey
e−i tan−1 z/z0√

1 + z2/z2
0

,

Bx = −n
c
Ey, By = 0, Bz =

2ix

kw2
0x

n

c
Ey

e−i tan−1 z/z0√
1 + z2/z2

0

, (2)

where c is the speed of light in vacuum,

k0 =
ω

c
, k = nk0, n = c

√
εμ, ρ =

√
x2

w2
0x

+
y2

w2
0y

, (3)

w0j for j = x or y is the characteristic radius of the beam at its waist (focus), θ0j is the
diffraction angle and z0 is the Rayleigh range, as shown in the figure below, which are related
by,

θ0j =
w0j

z0
,

1

z0
=

1

kw2
0x

+
1

kw2
0y

(
z0 =

kw2
0

2
=

2

kθ2
0

if w0x = w0y = w0

)
. (4)

Near the focus (ρ <∼ 1, |z| < z0), the beam (1)-(2) can be approximated as the plane
wave,2

Ex = 0, Ey = E0 e
−ρ2

ei(kz−ωt), Ez = − 2iy

kw2
0y

Ey, (5)

Bx = −n
c
Ey, By = 0 Bz =

2ix

kw2
0x

n

c
Ey, (6)

which obeys ∇ · E = 0 = ∇ · B recalling eq. (4). The equations ∇ × E = −∂B/∂(ct)
and ∇ × H = ∂D/∂(ct) are satisfied up to terms of order ρ2w0j/z0. We are interested in
transverse distances ρ ≈ 1, so the approximation (5)-(6) is a good solution to Maxwell’s

2The forms (5)-(6) could also be deduced quickly by first assuming Ey and Bx to be a plane wave with a
Gaussian transverse modulation, and then enforcing conditions ∇ ·E = 0 = ∇ ·B to determine Ez and Bz.
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equations provided w0j � z0, i.e., θ0j � 1. This is the case in the present problem, where
we wish to explore the behavior of very weakly focused optical beams.

The flow of energy in this elliptical beam is described by the (real) Poynting vector,

S =
ReE ×ReB

μ
=

√
ε

μ
E2

0 e
−2ρ2

(
− 2x

kw2
0x

sin[2(kz − ωt)],− 2y

kw2
0y

sin[2(kz − ωt)], cos2(kz − ωt)

)
.

(7)
The time-average flow of energy is, of course, only in the direction of propagation of the
wave. In addition, there is an oscillatory transverse flow of energy.3

2.2 Reflection and Refraction at a Single Interface

The classic formalism for plane waves is reviewed in Appendix B.
We first consider the refraction of a weakly focused Gaussian beam at a single interface

between linear, isotropic media of indices n1 = c
√
ε1μ1 and n2 = c

√
ε2μ2, using notation

as shown in the figure below. For simplicity, we restrict our attention to the case that the
electric field is perpendicular to the plane of incidence (i.e., to the x-z plane).

The incident, reflected and transmitted beams each have the Gaussian form (5)-(6), with
respect to axes (xi, yi, zi), (xr, yr, zr) and (xt, yt, zt), where the z-axes are in the directions of
propagation of the various beams.

The transformation between the axes (xi, yi, zi) of the incident beam and the laboratory
axes (x, y, z) is,

xi = cos θ1 x− sin θ1 z, yi = y, zi = sin θ1 x+ cos θ1 z, (8)

and,

ρ2
i =

x2
i

w2
ix

+
y2

i

w2
iy

=
cos2 θ1 x

2 − sin 2θ1 xz + sin2 θ1 z
2

w2
ix

+
y2

w2
iy

, (9)

where θ1 is the angle between the axis of the incident beam and the z-axis, and we assume
that axis of the incident beam passes through the origin. The components of a vector A
with respect to the laboratory frame are related to those with respect to axes (xi, yi, zi) by,

Ax = cos θ1Axi + sin θ1Azi, Ay = Ayi, Az = − sin θ1Axi + cos θ1Azi. (10)

3Near its waist, a Gaussian beam is similar to a wave inside a conducting wave guide, which latter case
also exhibits steady longitudinal, and oscillatory transverse, flow of energy [2].
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Combining eqs. (5)-(10), the components of the incident beam in the laboratory frame are,

Eix = −isin θ1 y

z0
Eiy, (11)

Eiy = E0i e
−ρ2

i ei(n1 sin θ1 k0x+n1 cos θ1 k0z−ωt), (12)

Eiz = −icos θ1 y

z0
Eiy, (13)

Bix =
n1

c

[
cos θ1 − i sin θ1

cos θ1 x− sin θ1 z

z0

]
Eiy, (14)

Biy = 0 (15)

Biz =
n1

c

[
sin θ1 + i cos θ1

cos θ1 x− sin θ1 z

z0

]
Eiy. (16)

Similarly, the reflected beam is related by,

xr = − cos θ1 x− sin θ1 z, yr = y, zr = − sin θ1 x− cos θ1 z, (17)

ρ2
r =

x2
r

w2
rx

+
y2

r

w2
rx

=
cos2 θ1 x

2 + sin 2θ1 xz + sin2 θ1 z
2

w2
rx

+
y2

w2
rx

, , (18)

Ax = − cos θ1Axi + sin θ1Azi, Ay = Ayi, Az = − sin θ1Axi − cos θ1Azi, (19)

Erx = −isin θ1 y

z0
Ery, (20)

Ery = E0r e
−ρ2

rei(n1 sin θ1 k0x−n1 cos θ1 k0z−ωt), (21)

Erz = i
cos θ1 y

z0
Eiy, (22)

Brx =
n1

c

[
− cos θ1 + i sin θ1

cos θ1 x+ sin θ1 z

z0

]
Ery, (23)

Bry = 0 (24)

Brz =
n1

c

[
sin θ1 + i cos θ1

cos θ1 x+ sin θ1 z

z0

]
Ery, (25)

where we have assumed that the reflected beam also makes angle θ1 with respect to the
z-axis, and that the axis of the reflected beam passes through the origin.

Likewise, the transmitted beam is related by,

xt = cos θ2 x− sin θ2 z, yt = y, zt = sin θ2 x+ cos θ2 z, (26)

ρ2
t =

x2
t

w2
tx

+
y2

t

w2
ty

=
cos2 θ2 x

2 − sin 2θ2 xz + sin2 θ2 z
2

w2
tx

+
y2

w2
ty

, (27)

Ax = cos θ2Axt + sin θ2Azt , Ay = Ayt , Az = − sin θ2Axt + cos θ2Azt , (28)

Etx = −isin θ2 y

z0t
Ety, (29)
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Ety = E0t e
−ρ2

t ei(n2 sin θ2 k0x+n2 cos θ2 k0z−ωt), (30)

Etz = −icos θ2 y

z0t
Ety, (31)

Btx =
n2

c

[
cos θ2 − i sin θ2

cos θ2 x− sin θ2 z

z0t

]
Ety, (32)

Bty = 0 (33)

Btz =
n2

c

[
sin θ2 + i cos θ2

cos θ2 x− sin θ2 z

z0t

]
Ety. (34)

The boundary conditions at the interface z = 0 are that E⊥, Dz = εEz, Bz and H⊥ =
B⊥/μ are continuous. Thus, continuity of Ey,

E0i e
−ρ2

i ei(n1 sin θ1 k0x−ωt) + E0r e
−ρ2

rei(n1 sin θ1 k0x−ωt) = E0t e
−ρ2

t ei(n2 sin θ2 k0x−ωt), (35)

for all x and y, which confirms the assumption that θr = θi = θi, verifies Snell’s law,

n1 sin θ1 = n2 sin θ2, (36)

tells us that beam waists are related by,

wix = wrx =
cos θ1

cos θ2

wtx, wiy = wry = wty, (37)

and that the wave amplitudes are related by,

E0i + E0r = E0t. (38)

Similarly, the continuity of Hx = Bx/μ tells us that,

n1 cos θ1

μ1

(E0i − E0r) =
n2 cos θ2

μ2

E0t. (39)

Combining eqs. (38) and (39) we obtain the usual Fresnel relations,4 for polarization per-
pendicular to the plane of incidence,

E0r

E0i
=
n1 cos θ1 − μ1

μ2
n2 cos θ2

n1 cos θ1 + μ1

μ2
n2 cos θ2

,
E0t

E0i
=

2n1 cos θ1

n1 cos θ1 + μ1

μ2
n2 cos θ2

. (40)

Furthermore, the continuity of Ex (or Dz = εEz) tells us that the Rayleigh ranges are related
by,

z0i = z0r =
sin θ1

sin θ2
z0t =

n2

n1
z0t. (41)

Equation (41) is not quite consistent with eqs. (4) and (37).

In the remainder of the body of this note we suppose that μ1 = μ2 = μ0, where the
latter is the permeability of the vacuum. We also suppose that the incident Gaussian beam
is circularly symmetric, and write the incident waist as wix = wiy = w1. It follows that
the reflected Gaussian beam is also circularly symmetric with the same waist w1. The
incident and reflected beams have Rayleigh range z0i = k1w

2
1/2 = n1k0w

2
1/2, while that of

the transmitted beam is z0t = n1z0i/n2.

4See Appendix B
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2.3 Total Reflection at a Single Interface

The phenomenon of total reflection at an interface between optically denser and lighter media
was discussed by Newton in Proposition 96 of his Principia [3], and in further detail in his
Opticks [4]. Newton’s model was that particles of light are attracted by the denser medium,
and so follow curved rays that result in an offset between the incident and reflected path, as
shown in the figure on the left below (from the Principia).

Newton’s prediction was largely forgotten after the success of the wave theory of light in
the early 1800’s, but was occasionally discussed in the first half of the 20th century [5, 6, 7, 8].
Then, in 1947 Goos and Hänchen [9] provided experimental evidence for what is now called
the Goos-Hänchen shift, d, illustrated in the figure on the above right.

Total reflection occurs when the indices of the two media obey n1 > n2 and the angle of
incidence, θ1, is large enough that sin θ2 = (n1/n2) sin θ1 > 1. In this case,

cos θ2 =
√

1 − sin2 θ2 = i

√
n2

1 sin2 θ1 − n2
2

n2
, (42)

is purely imaginary. As a consequence, the amplitudes (40) of the reflected and transmitted
waves include a phase shift relative to that of the incident wave, while,

|E0r| = |E0i| , and
|E0t|2
|E0i|2

=
4n2

1 cos2 θ1

n2
1 − n2

2

. (43)

The quantity ρ2
t of eq. (27) can now be written as,

ρ2
t =

(n2
2 − n2

1 sin2 θ1)x
2 − 2in1 sin θ1

√
n2

1 sin2 θ1 − n2
2 xz + n2

1 sin2 θ1 z
2

n2
2w

2
tx

+
y2

w2
ty

. (44)

Hence, matching of this form to that of ρ2
i at z = 0 requires that,

ρ2
t =

cos2 θ1x
2

w2
1

+
y2

w2
1

− n2
1 sin2 θ1 cos2 θ1 z

2

(n2
1 sin2 θ1 − n2

2)w
2
1

+ 2i
n1 sin θ1 cos2 θ1 xz√
n2

1 sin2 θ1 − n2
2w

2
1

, (45)

recalling eq. (9). The factor e−Re(ρ2
t ) is constant on surfaces that are elliptical hyperboloids

of 1 sheet about the z-axis, with asymptotic opening angle θtxz in the x-z plane given by,

tan θtxz =
n1 sin θ1√

n2
1 sin2 θ1 − n2

2

> 1. (46)
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This potentially dramatic behavior is, however, masked by the damping of the transmitted
wave in z, as follows from the factor,

ei(n2 sin θ2 k0x+n2 cos θ2 k0z−ωt) = e−
√

n2
1 sin2 θ1−n2

2k0zei(n1 sin θ1 k0x−ωt). (47)

The time-average flow of energy in medium 2 is given by,

〈S〉 =
Re(Et × B�

t )

2μ0

=
1

2μ0

Re [EtyB
�
tz x̂ + (EtzB

�
tx − EtxB

�
tz) ŷ − EtyB

�
tx ẑ]

=
n2 |E0t|2

2μ0c
e−2Re(ρ2

t ) e−2
√

n2
1 sin2 θ1−n2

2k0z

[
sin θ2

(
1 −

√
n2

1 sin2 θ1 − n2
2 z

z0t

)
x̂

−sin θ2

√
n2

1 sin2 θ1 − n2
2 x

z0t
ẑ.

]

≈ |E0t|2
2μ0c

e−2Re(ρ2
t ) e−2

√
n2

1 sin2 θ1−n2
2k0z sin θ1

(
n1x̂− n2x

z0i

√
n2

1 sin2 θ1 − n2
2 ẑ

)
, (48)

noting that z0t = n1z0i/n2.
Energy flows in the +x direction in medium 2, but this flow is significant only near the

origin because of exponential damping factors. Furthermore, energy flows in the +z direction
for x > 0 and in the −z direction for x > 0. That is, energy flows in curves in medium 2, as
qualitatively predicted by Newton. Lines of 〈S〉 that enter medium 2 from medium 1 at −x
return to medium 1 at +x.

In particular, the flow of energy between media 1 and 2 across the plane z = 0 is described
by,

〈Sz〉2→1 = −|E0i|2
2μ0c

4n2
1n2 cos2 θ1

n2
1 − n2

2

sin θ1

√
n2

1 sin2 θ1 − n2
2 x

z0i
e−2(cos2 θ1 x2+y2)/w2

1 , (49)

recalling eq. (43). This energy adds to that in the nominal reflected wave at z = 0 for x > 0,

〈Sz〉r = − 1

2μ0

Re (Ery(z = 0)B�
rx(z = 0)) = −|E0i|2

2μ0c
n1 cos θ1 e

−2(cos2 θ1 x2+y2)/w2
1 , (50)

and subtracts from that for x < 0. We define a center of energy x̄ for the reflected wave at
z = 0 according to,

x̄ =

∫∞
−∞ x 〈Sz〉r dx−

∫ 0

−∞ x 〈Sz〉2→1 dx+
∫∞
0
x 〈Sz〉2→1 dx∫∞

−∞ 〈Sz〉r dx
=

2
∫∞

0
x 〈Sz〉2→1 dx∫∞

−∞ 〈Sz〉r dx

=

8n2
1n2 cos2 θ1

n2
1−n2

2

sin θ1

√
n2

1 sin2 θ1−n2
2

z0i

√
πw3

1

8
√

2 cos3 θ1

n1 cos θ1

√
πw1

2
√

2 cos θ1

=
λ0

π

n2

n2
1 − n2

2

tan θ1

√
n2

1 sin2 θ1 − n2
2, (51)

recalling that w2
1/2z0i = 1/k1 = λ0/2πn1. Here, λ0 is the wavelength in vacuum at angular

frequency ω.

7



Supposing that the reflected beam is centered on x̄ rather than x = 0 in the plane z = 0,
it propagates away from this plane at angle θ1 with its axis shifted transversely by d with
respect to “mirror” reflection, as sketched in the figure on the previous page, where,

d = x̄ cos θ1 =
λ0

π

n2

n2
1 − n2

2

sin θ1

√
n2

1 sin2 θ1 − n2
2. (52)

The result (52) is not that quoted in the literature [10]-[23],

d =
λ0

π

n2
1

n2
1 − n2

2

sin θ1 cos2 θ1√
n2

1 sin2 θ1 − n2
2

or
λ0

n1π

sin θ1√
n2

1 sin2 θ1 − n2
2

. (53)

where different sets of approximations are used. While most experiments have been per-
formed at a single angle θ1, a recent effort [24] that measured a large range of angles supports
eq. (53).

The result (53) is often justified by claiming that the incident wave penetrates into

medium 2 at angle θ1 for a distance D ≈ λ0/
(
2π
√
n2

1 sin2 θ1 − n2
2

)
according to eq. (47), at

which depth it is reflected back into medium 1 [18]. If so, then it follows that d = 2D sin θ1 =

λ0 sin θ1/
(
π
√
n2

1 sin2 θ1 − n2
2

)
. This result diverges at the critical angle, sin θ1 = n2/n1.

However, our argument (52) indicates that the shift of energy from x < 0 to x > 0 vanishes
at the critical angle......

Appendices

A Gaussian Beams with Elliptical Cross Section

Many discussions of Gaussian beams emphasize a single electric field component, such as
Ey = f(r, z) ei(kz−ωt), of a cylindrically symmetric beam of angular frequency ω and wave
number k = nω/c propagating along the z axis in a medium with index of refraction n. Here,
we generalize to the case of a beam with an elliptical cross section. Of course, the electric
field must satisfy the free-space Maxwell equation ∇ · E = 0. If f(r, z) is not constant and
Ex = 0, then we must have nonzero Ez. That is, the desired electric field has more than one
vector component.

To deduce all components of the electric and magnetic fields of a Gaussian beam from a
single scalar wave function, we follow the suggestion of Davis [27] and seek solutions for a
vector potential A that has only a single Cartesian component (such that (∇2A)j = ∇2Aj

[28]). We work in the Lorenz gauge (and SI units), so that the electric scalar potential Φ is
related to the vector potential A by,

∇ · A = −n
2

c2
∂Φ

∂t
= i

n2ω

c2
Φ = i

k2

ω
Φ. (54)

The vector potential can therefore have a nonzero divergence, which permits solutions having
only a single component.
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Of course, the electric and magnetic fields can be deduced from the potentials via,

E = −∇Φ − ∂A

∂t
= i

ω

k2
∇(∇ ·A) + iωA, (55)

using the Lorenz condition (54), and,

B = ∇ × A. (56)

The vector potential satisfies the free-space (Helmholtz) wave equation,

∇2A− n2

c2
∂2A

∂t2
= (∇2 + k2)A = 0. (57)

We seek a solution in which the vector potential is described by a single Cartesian component
Aj that propagates in the +z direction with the form,

Aj(r) = ψ(r) ei(kz−ωt). (58)

Inserting trial solution (58) into the wave equation (57) we find that,

∇2ψ + 2ik
∂ψ

∂z
= 0. (59)

In the usual analysis, one now assumes that the beam is cylindrically symmetric about
the z axis and can be described in terms of three geometric parameters the diffraction angle
θ0, the waist w0, and the depth of focus (Rayleigh range) z0, which are related by,

θ0 =
w0

z0
=

2

kw0
, and z0 =

kw2
0

2
=

2

kθ2
0

. (60)

Here, we consider the possibility that the beam has an elliptical cross section, with major
and minor axes along the x and y axes. The waist and diffraction angle are different in the
x-z and y-z planes, but the Rayleigh range is in common:

θ0x =
w0x

z0
, and θ0y =

w0y

z0
. (61)

We now convert to the scaled coordinates,

ξ =
x

w0x
, υ =

y

w0y
, ρ2 = ξ2 + υ2, and ς =

z

z0
. (62)
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Changing variables and noting relations (61), the wave equation (59) takes the form,

1

w2
0x

∂2ψ

∂ξ2 +
1

w2
0y

∂2ψ

∂υ2
+

1

z2
0

∂2ψ

∂ς2
+

2ik

z0

∂ψ

∂ς
= 0. (63)

The paraxial approximation is that the term in the relatively small quantity 1/z2
0 is neglected,

and the resulting paraxial wave equation is,

1

w2
0x

∂2ψ

∂ξ2 +
1

w2
0y

∂2ψ

∂υ2
+

2ik

z0

∂ψ

∂ς
≈ 0. (64)

An “educated guess” is that the transverse behavior of the wave function ψ has a Gaussian
form, but with a width that varies with z. Also, the amplitude of the wave far from its waist
should vary as 1/z. In the scaled coordinates ρ and ς a trial solution is,

ψ = h(ς) e−f(ς)ρ2

, (65)

where the possibly complex functions f and h are defined to obey f(0) = 1 = h(0). Since
the transverse coordinate ξ and υ are scaled by the waists w0x and w0y, we see that Re(f) =
w2

0j/w
2
j (ς) where wj(ς) is the beam width in coordinate j = x or y at position ς . From the

geometric parameters (62) we see wj(ς) ≈ θ0jz = w0jς for large ς . Hence, we expect that
Re(f) ≈ 1/ς2 for large ς . Also, we expect the amplitude h to obey |h| ≈ 1/ς for large ς .

Plugging the trial solution (65) into the paraxial wave equation (64) we find that,

− fh

(
1

w2
0x

+
1

w2
0y

)
+ 2f2h

(
ξ2

w2
0x

+
υ2

w2
0y

)
+
ik

z0

(h′ − f ′hρ2) ≈ 0, (66)

where a ′ indicates differentiation with respect to ς . We can define the Rayleigh range z0

and the waists w0x and w0y to be related by,(
1

w2
0x

+
1

w2
0y

)
=

k

z0
, (67)

so eq. (66) can be rewritten as,

− fh+ ih′ + ρ2h

[
2z0

kρ2

(
ξ2

w2
0x

+
υ2

w2
0y

)
f2 − if ′

]
≈ 0. (68)

If w0x = w0y, eq. (68) reduces to the form,

− fh+ ih′ + ρ2h(f2 − if ′) ≈ 0, (69)

recalling eq. (60). The key approximation of this note is that eq. (68) can be written
as eq. (69) even when w0x 	= w0y.

Accepting this approximation, we see that for eq. (69) to be true at all values of ρ implies
that,

f ′

f2
= −i, and

h′

fh
= −i. (70)
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Thus, f = h is a solution, despite the different physical origin of these two functions as the
transverse width and amplitude of the wave. We integrate the first of eq. (70) to obtain,

1

f
= C + iς. (71)

Our definition f(0) = 1 determines that C = 1. That is,

f =
1

1 + iς
=

1 − iς

1 + ς2
=
e−i tan−1 ς

√
1 + ς2

. (72)

Note that Re(f) = 1/(1 + ς2) = w2
0j/w

2
j (ς), while |f | = 1/

√
1 + ς2, so that f = h is

consistent with the asymptotic expectations discussed above. The longitudinal dependences
of the widths of the Gaussian beam are now seen to be,

wj(ς) = w0j

√
1 + ς2. (73)

The lowest-order wave function is,

ψ0 = f e−fρ2

=
e−i tan−1 ς

√
1 + ς2

e−ρ2/(1+ς2) eiςρ2/(1+ς2). (74)

The factor e−i tan−1 ς in ψ0 is the so-called Gouy phase shift [29], which changes from 0 to π/2
as z varies from 0 to ∞, with the most rapid change near the z0. For large z the phase
factor eiςρ2/(1+ς2) can be written as ei(z0/z)(x2/w2

0x+y2/w2
0y) ≈ eikr2

⊥/(2z), recalling eqs. (62) and
(67). When this is combined with the traveling wave factor ei(kz−ωt) we have,

ei[kz(1+r2
⊥/2z2)−ωt] ≈ ei(kr−ωt), (75)

where r =
√
z2 + r2

⊥. Thus, the wave function ψ0 is a modulated spherical wave for large z,
but is a modulated plane wave near its waist.

To obtain the electric and magnetic fields of a Gaussian beam that is polarized in the y
direction we take the vector potential to be,

Ax = 0, Ay =
E0

iω
ψ0 e

i(kz−ωt) =
E0

iω
f e−fρ2

ei(kz−ωt), Az = 0. (76)

Then,

∇ · A = −2fy

w2
0y

Ay. (77)

and the electric field follows from eq. (55) as,

Ex ≈ 0, Ey ≈ E0f e
−fρ2

ei(kz−ωt), Ez ≈ −2iyf

kw2
0y

Ey, (78)

where we neglect terms of order 1/z2
0 . Similarly, the magnetic field follows from eq. (56) as,

Bx = −√
εμEy = −n

c
Ey, By = 0, Bz =

2ixf

kw2
0x

n

c
Ey. (79)
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B Fresnel Relations for Plane Waves

For reference we present a derivation of the well-known Fresnel relations for reflection and
refraction of a plane wave at a planar interface.

The geometry and notation are again as shown in the figure below, with the plane of
incidence being the x-z plane.

The incident, reflected and transmitted waves can be written as,

Ei = E0i e
i(kixx+kizz−ωt), Er = E0r e

i(krxx+krzz−ωt), Et = E0t e
i(ktxx+ktzz−ωt), (80)

Bi =
ki

ω
×E0i e

i(kixx+kizz−ωt), Br =
kr

ω
×E0r e

i(krxx+krzz−ωt), Bt =
kt

ω
×E0t e

i(ktxx+ktzz−ωt),

(81)
where we have used the plane-wave Maxwell equation ik × E = ∇ × E = −∂B/∂t = iωB,
and we note that the wave equation ∇2E = ∂2E/∂t2 requires that,

k2
i = k2

ix + k2
iz =

n2
1ω

2

c2
, k2

r = k2
rx + k2

rz =
n2

1ω
2

c2
, k2

t = k2
tx + k2

tz =
n2

2ω
2

c2
, (82)

so that,

ki = kr =
n1

n2

kt. (83)

Continuity of the tangential component of E at the interface requires that the argument of
the exponential factors all be equal there, and hence,

kix = krx = ktx, (84)

θi = θr = θ1, krz = −kiz, (85)

and,
n1 sin θ1 = n2 sin θ2 (= n2 sin θt). (86)

Then, the continuity of the x- and y-components of E = μωH×k/k2 at the interface implies,

H0iy −H0ry =
μ2

μ1

n2
1

n2
2

ktz

kiz
H0ty =

μ2

μ1

n1 cos θ2

n2 cos θ1
H0ty, and E0iy + E0ry = E0ty, (87)

12



noting that Ex ∝ μkzHy/n
2. Similarly, continuity of the tangential component of H =

k ×E/μω at the interface implies,

E0iy − E0ry =
μ1

μ2

ktz

kiz
E0ty =

μ1

μ2

n2 cos θ2

n1 cos θ1
E0ty, and H0iy +H0ry = H0ty. (88)

noting that Hx ∝ kzHy/μ. Combining eqs. (87) and (88) we find,

E0ry

E0iy
=
n1 cos θ1 − μ1

μ2
n2 cos θ2

n1 cos θ1 + μ1

μ2
n2 cos θ2

,
E0ty

E0iy
=

2n1 cos θ1

n1 cos θ1 + μ1

μ2
n2 cos θ2

, (89)

H0ry

H0iy

=
n2 cos θ1 − μ2

μ1
n1 cos θ2

n2 cos θ1 + μ2

μ1
n1 cos θ2

,
H0ty

H0iy

=
2n2 cos θ1

n2 cos θ1 + μ2

μ1
n1 cos θ2

. (90)

For the special case of the electric field polarized perpendicular to the plane of incidence, H
has no y-component, and we write,

E0r⊥
E0i⊥

=
n1 cos θ1 − μ1

μ2
n2 cos θ2

n1 cos θ1 + μ1

μ2
n2 cos θ2

,
E0t⊥
E0i⊥

=
2n1 cos θ1

n1 cos θ1 + μ1

μ2
n2 cos θ2

, (91)

Similarly, for the special case of the electric field polarized parallel to the plane of incidence,
E has no y-component, and for each of the three waves, Hy ∝ nE‖/μ, so we can write,

E0r‖
E0i‖

=

μ1

μ2
n2 cos θ1 − n1 cos θ2

μ1

μ2
n2 cos θ1 + n1 cos θ2

,
E0t‖
E0i‖

=
2n1 cos θ1

μ1

μ2
n2 cos θ1 + n1 cos θ2

, (92)

As usual, we note that the case of internal reflection when sin θ2 = (n1/n2) sin θ1 > 1 can
be accommodated in the above formalism by writing,

cos θ2 =
√

1 − sin2 θ2 =

√
n2

2 − n2
1 sin2 θ1

n2
= i

√
n2

1 sin2 θ1 − n2
2

n2
. (93)

In this case, we also write,

ktz = ik0

√
n2

1 sin2 θ1 − n2
2

n2

, (94)

such that the transmitted wave is damped in z according to,

eiktzz = e
−
(√

n2
1 sin2 θ1−n2

2/n2

)
k0z

. (95)
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Die Energieströmung bei der Totalreflexion, Phys. Z. 30, 905 (1929),
http://kirkmcd.princeton.edu/examples/optics/picht_pz_30_905_29.pdf

[8] C. Schaefer and R. Pich, Ein Beitrag zur Theorie der Totalreflexion, Ann. Phys. 30,
245 (1937), http://kirkmcd.princeton.edu/examples/optics/schaefer_ap_30_245_37.pdf

[9] F. Goos and H. (Lindberg-)Hänchen, Ein neuer und fundamentaler Versuch zur Total-
reflexion, Ann. Phys. 1, 333 (1947),
http://kirkmcd.princeton.edu/examples/optics/goos_ap_1_333_47.pdf

14



Neumessung des Strahlversetzungseffektes bei Totalreflexion, Ann. Phys. 5, 251 (1949),
http://kirkmcd.princeton.edu/examples/optics/goos_ap_5_251_49.pdf

[10] K. Artmann, Zur Seitenversetzung des totalreflektierten Lichtstrahles, Ann. Phys. 2, 87
(1948), http://kirkmcd.princeton.edu/examples/optics/artmann_ap_2_87_48.pdf

[11] C. von Fragstein, Berechnung der Seitenversetzung des totalreflektierten Strahles, Ann.
Phys. 4, 18 (1949), http://kirkmcd.princeton.edu/examples/optics/vonfragstein_ap_4_18_49.pdf

[12] H. Wolter, Untersuchengen zur Strahlversetzung bei Totalreflexiondes Lichtes mit der
Methode der Minimumstrahlkennzeichnung, Z. Natur. 5a, 143 (1950),
http://kirkmcd.princeton.edu/examples/optics/wolter_zn_5a_143_50.pdf

[13] R.H. Renard, Total Reflection: A New Evaluation of the Goos-Hänchen Shift, J. Opt.
Soc. Am. 54, 1190 (1964), http://kirkmcd.princeton.edu/examples/optics/renard_josa_54_1190_64.pdf

[14] H.K.V. Lotsch, Reflection and and Refraction of Light at a Plane Interface, J. Opt. Soc.
Am. 58, 551 (1968), http://kirkmcd.princeton.edu/examples/optics/lotsch_josa_58_551_68.pdf

Beam Displacement at Total Reflection: The Goos-Hänchen Effect, Optik, 32, 116, 189,
300, 563 (1970), http://kirkmcd.princeton.edu/examples/optics/lotsch_optik_32_116_70.pdf

[15] C. Imbert, Calculation and Experimental Proof of the Transverse Shift Induced by Total
Internal Reflection of a Circularly Polarized Light Beam, Phys. Rev. D 5, 787 (1972),
http://kirkmcd.princeton.edu/examples/optics/imbert_prd_5_787_72.pdf

[16] B.R. Horowitz and T. Tamir, Lateral Displacement of a Light Beam at a Dielectric
Interface, J. Opt. Soc. Am. 61, 586 (1971),
http://kirkmcd.princeton.edu/examples/optics/horowitz_josa_61_586_71.pdf

[17] L. de Broglie and J.P Vigier, Photon Mass and New Experimental Results on Longitu-
dinal Displacements of Laser Beams near Total Reflection, Phys. Rev. Lett. 28, 1001
(1972), http://kirkmcd.princeton.edu/examples/optics/debroglie_prl_28_1001_72.pdf

[18] K.W Chiu and J.J. Quinn, On the Goos-Hänchen Effect. A Simple Example of a Time
Delay Scattering Process, Am. J. Phys. 40, 1847 (1972),
http://kirkmcd.princeton.edu/examples/optics/chiu_ajp_40_1847_72.pdf

[19] J.W. Ra, H.L. Bertoni and L.B. Felsen, Reflection and Transmission of Beams at a
Dielectric Interface, SIAM J. Appl. Math. 24, 396 (1973),
http://kirkmcd.princeton.edu/examples/optics/ra_siamjam_24_396_73.pdf

[20] Y.M. Antar and W.B. Boerner, Reflection and Refraction of a Gaussian Beam at a
Planar Dielectric Interface, Ant. Prop. Soc. Int. Symp. 12, 105 (1974),
http://kirkmcd.princeton.edu/examples/optics/antar_apsim_12_105_74.pdf

[21] S. Zhu, A.W. Yu, D. Hawley and R. Roy, Frustrated total internal reflection: A demon-
stration and review, Am. J. Phys. 54, 601 (1986),
http://kirkmcd.princeton.edu/examples/optics/zhu_ajp_54_601_86.pdf

15



[22] P. Hillion, Gaussian Beam at a Dielectric Interface, J. Opt. (Paris) 25, 155 (1994),
http://kirkmcd.princeton.edu/examples/optics/hillion_jop_25_155_94.pdf

[23] D.A. Papathanassoglou and B. Vohnsen, Direct visualization of evanescent optical
waves, Am. J. Phys. 71, 670 (2003),
http://kirkmcd.princeton.edu/examples/optics/papathanassoglou_ajp_71_670_03.pdf

[24] H.G.L. Schwefel et al., Direct experimental observation of the single reflection optical
Goos-Hänchen shift, Opt. Lett. 33, 794 (2008),
http://kirkmcd.princeton.edu/examples/optics/schwefel_ol_33_794_08.pdf

[25] J.C. Bose, On the Influence of the Thickness of Air-space on Total Reflection of Electric
Radiation, Proc. Roy. Soc. London 62, 300 (1897),
http://kirkmcd.princeton.edu/examples/optics/bose_prsl_62_300_97.pdf

[26] E.E. Hall, The Penetration of Totally Reflected Light into the Rarer Medium, Phys.
Rev. 15, 73 (1902), http://kirkmcd.princeton.edu/examples/optics/hall_pr_15_73_02.pdf

[27] L.W. Davis, Theory of electromagnetic beams, Phys. Rev. A 19, 1177-1179 (1979),
http://kirkmcd.princeton.edu/examples/optics/davis_pra_19_1177_79.pdf

[28] P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw-Hill,
1953), pp. 115-116, http://kirkmcd.princeton.edu/examples/EM/morse_feshbach_v1.pdf

[29] G. Gouy, Sur une propreite nouvelle des ondes lumineuases, Compt. Rendue Acad. Sci.
(Paris) 110, 1251 (1890); Sur la propagation anomele des ondes, ibid. 111, 33 (1890),
http://kirkmcd.princeton.edu/examples/optics/gouy_cr_110_1251_90.pdf

http://kirkmcd.princeton.edu/examples/optics/gouy_cr_111_33_90.pdf

16


