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1 Problem

It is often considered useful to regard a magnetization density M as the equivalent of a bulk
electric-current density J plus a surface-current density K, where (in SI units),

J = ∇ × M, K = M× n̂, (1)

and n̂ is the outward unit vector normal to the surface of the magnetized object.1 Can we
also suppose that any electric current density J is equivalent to a magnetization density M?2

In 1820, Ampère made the fruitful conjecture that all magnetism is due to electric cur-
rents,3 in contrast to the then-prevailing (Gilbertian) view that magnetism is due to magnetic
charges/poles which cannot be isolated but exist in pairs of opposite poles, i.e., magnetic
dipoles described by magnetization density M.4 While we now know that Ampère’s view is
correct (see the Appendix below), the issue of this note is whether the spirit of the Gilber-
tian view is valid to the extent that any Ampèrian current density J is equivalent to an an
(Ampèrian) magnetization density M.

Is any electric charge density ρ equivalent to a polarization density P where ρ = −∇ ·P?

2 Solution

In brief, the answer is NO, in the sense that while a mathematical equivalence can be ex-
hibited (for static situations), the equivalent magnetization has nonphysical properties, as
discussed in sec. II.D.2 of [7] and noted in sec. 13.2.6 of [8]. Here, we elaborate.5

2.1 Faraday’s Argument (July 30, 2022)

A particular argument of Ampère, as interpreted by Faraday (1822) on pp. 85-86 of [10], was
that a long, thin solenoid is equivalent to a pair of opposite poles, located at the centers of
the two ends of the solenoid. That is, the long, thin solenoid is equivalent to a magnetized
needle.

Faraday then argued, p. 86 of [10], that this (simplified) claim of Ampère could not be
so, because in an experiment with a solenoid wound on a hollow glass tube, a magnetized

1An example of the utility of such equivalent current densities is given in sec. 3.1 of [1].
2One paper that suggests the answer to be YES is [2].
3See p. 166 of [3], and also [4].
4See Book 3, Chap. 15 of [5], and more explicitly, p. 206 of [6].
5That the answer is NO has been discussed by the author in a particular context in sec. 2.3 of [9].

1



needle of the same length as the solenoid would first have its “north” pole attracted to the
“south” pole of the solenoid, after which the needle would be pulled inside the hollow tube
until the “north” pole of the needle ended up at the supposed position of the “north” pole
of the solenoid (and with the two “south” poles also coinciding). This experimental result
certainly conflicts with the approximation of the solenoid as a magnetized needle.

It seems that Faraday’s interpretation of this experiment6 was a precursor to his later
view that a solenoid is associated with (curved) magnetic field lines B which exert a force
F = pB on a magnetic pole of strength p.

Ampere’s view of the magnetized needle was that it contained “molecular currents” whose
net effect is that of a long, thin solenoid. Then, Ampère’s force law does correctly predict
the forces between the solenoid and the magnetized needle, including the pull of the needle
into the hollow solenoid. That is, Faraday’s experiment did not disprove Ampère’s vision,
which perhaps was Faraday’s original intent. But, the experiment did cast doubt on the
notion that electric currents are equivalent to a magnetization density.

2.2 Maxwell’s Argument (Mar. 3, 2022)

In Art. 637 of [12], Maxwell argued very concisely that: It is impossible, by any arrangement
of magnetized matter, to produce a system corresponding in all respects to an electric circuit,
for the (magnetic scalar) potential of the magnetic system is single valued at every point of
space, whereas that of the electric system is many-valued.

2.3 Only a Steady Current Density Can Obey J = ∇ × M

If a current density obeys eq. (1), then,7

∇ · J = 0, (2)

i.e., the current density is steady.
Charge-current conservation tells us that,

∇ · J = −∂ρ

∂t
, (3)

where ρ is the electric charge density. Hence, if eq. (1) is to hold, the charge density must
also be steady (time independent).

A charge or current density that is steady in one (inertial) frame of reference is not steady
in any frame of reference that is in motion relative to the first frame. Hence, the relation (1)
holds at most in a preferred reference frame, and is not generally consistent with the theory
of special relativity.

We defer discussion of a relativistic form of an equivalence of charge and current densities
to sec. 2.6.

6See p. 76 of [11].
7This contrasts with the fact that if magnetic charges do not exist (as is true so far as we know), then

the magnetic field obeys ∇ ·B = 0 in any inertial frame, such that B = ∇×A for some vector potential A
in any inertial frame.
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2.4 Nonuniqueness of the Relation J = ∇×M for a Given Current

Density J

We might be content to analyze problems in which the current density J is steady only in a
particular frame of reference. However, in that frame it remains that if M is an equivalent
magnetization density which satisfies eq. (1), then the density M′ does also, where,

M′ = M + ∇χ, (4)

for any differentiable scalar function χ. That is, the magnetization M in relation (1) is like
the vector potential A in the relation B = ∇ × A, and so cannot be assigned a definite
physical value, however useful it may be in computations involving the current density J.8

2.4.1 Equivalent Magnetization and the Poincaré Gauge

Prescriptions for the equivalent magnetization M of a specified current density J can be de-
duced in analogy to the use of the so-called Poincaré gauge for the electromagnetic potentials
V and A.

We recall that in cases where the fields E and B are known, we can compute the potentials
in the Poincaré gauge (see sec. 9A of [13] and [14, 15, 16]),9

V (P)(r, t) = −r ·
∫ 1

0

duE(ur, t), A(P)(r, t) = −r ×
∫ 1

0

u duB(ur, t) (Poincaré). (5)

These forms are remarkable in that they depend on the instantaneous value of the fields only
along a line between the origin and the point of observation.10,11

8Similarly, the transformation P → P + ∇ × F for any vector field F leaves the polarization charge
density ρ = −∇ · P unchanged.

9The Poincaré gauge is also called the multipolar gauge [17].
10The potentials in the Poincaré gauge depend on the choice of origin. If the origin is inside the region of

electromagnetic fields, then the Poincaré potentials are nonzero throughout all space. If the origin is to one
side of the region of electromagnetic fields, then the Poincaré potentials are nonzero only inside that region,
and in the region on the “other side” from the origin.

11We transcribe Appendices C and D of [14] to verify that E and B indeed follow from the Poincaré
potentials (5):

−∇V (P) − 1
c

∂A(P)

∂t
=
∫ 1

0

du

{
∇[r · E(ur, t)] + r × u

c

∂B(ur, t)
∂t

}
=
∫ 1

0

du {∇[r ·E(ur, t)] − r × [∇× E(ur, t)]}

=
∫ 1

0

du {(r · ∇)E(ur, t) + [E(ur, t) · ∇]r + E(ur, t) × (∇ × r)} =
∫ 1

0

du

{
u

d(uxi)
du

∂E(ur, t)
∂(uxi)

+ E(ur, t)
}

=
∫ 1

0

du
d

du
uE(ur, t) = E(r, t). (6)

∇ ×A(P) = −
∫ 1

0

u du ∇× [r× B(ur, t)]

= −
∫ 1

0

u du {r[∇ · B(ur, t)]− B(ur, t)[∇ · r] + [B(ur, t) · ∇]r− (r ·∇)B(ur, t)}

=
∫ 1

0

u du

{
2B(ur, t) + uxi

∂B(ur, t)
∂(uxi)

}
=
∫ 1

0

u du

{
1
u

d

du
u2B(ur, t)

}
= B(r, t). (7)
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When ∇ · J = 0 we can use the vector version of eq. (5) to give a form for the effective
magnetization in the Poincaré gauge,

M(P)(r) = −r ×
∫ 1

0

u duJ(ur) (Poincaré, steady currents). (8)

In contrast, the equivalent magnetization is written in the Appendix to [18], and in
eq. (4.8) of [7], as,

M(T)(r) = r ×
∫ ∞

1

u duJ(ur) (Trammel, steady currents), (9)

which is valid, recalling eq. (7), for magnetic fields that fall off faster then 1/r for large r, as
is the case for steady currents in a bounded volume. We call the form (9) the magnetization
in the Trammel gauge.

2.5 Examples Where ∇ · J = 0

2.5.1 Uniform Ring of Current

Consider a ring (torus of major radius a and minor radius b < a, centered on the origin with
z = 0 as its symmetry plane, that carries uniform current density J = J φ̂ in a spherical
coordinate system (r, θ, φ). See the figure on the next page.

The equivalent magnetizations according to eqs. (8) and (9) are straightforwardly com-
puted when the origin is at the center of the torus. Then, a ray of polar angle θ with
|cos θ| < cos θ0 = b/a intersects the surface of the torus at radii r1 and r2 related by,

b2 = a2 + r2
i − 2ari cosα = a2 + r2

i − 2ari sin θ, ri = a

(
sin θ ±

√
b2

a2
− cos2 θ

)
. (10)

The equivalent magnetization of eq. (8) is nonzero along such a ray for all r > r1, with,

M(P)(r1 < r < r2) = −r × J φ̂

∫ 1

r1/r

u du = J
r2 − r2

1

2r
θ̂ (Poincaré), (11)

M(P)(r > r2) = −r × J φ̂

∫ r2/r

r1/r

u du = J
r2 − r2

1

2r
θ̂ (Poincaré). (12)
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Note that the equivalent magnetization (12) is nonzero outside the torus, for r2 < r < ∞,
which reaffirms that this magnetization is nonphysical.

Similarly, the equivalent magnetization of eq. (9) is also nonzero along such a ray for all
r > r1, with,

M(T)(r < r1) = r × J φ̂

∫ r2/r

r1/r

u du = −J
r2
2 − r2

1

2r
θ̂ (Trammel), (13)

M(T)(r1 < r < r2) = r× J φ̂

∫ r2/r

1

u du = −J
r2
2 − r2

2r
θ̂ (Trammel). (14)

Again, the magnetization is nonzero outside the torus, but now for r < r1 where the magneti-
zation diverges as r → 0, while the magnetization (14) inside the torus has the opposite sign
to that of eq. (11). This illustrates that the equivalent magnetization is not gauge invariant.

Of course, the magnetizations (11)-(14) satisfy J = ∇ × M = J φ̂ inside the torus, and
J = 0 outside, as is readily verified by direct differentiation, noting that Jφ = (1/r)∂(rMθ)/∂r.

2.5.2 Rotating, Uniformly Charged Sphere

For a sphere of radius a with uniform electric charge density ρ, centered on the origin
and rotating with angular velocity ω about the z-axis, the current density is J(r < a) =
ρωr sin θ φ̂ in a spherical coordinate system (r, θ, φ).

The equivalent magnetization of eq. (8) is nonzero throughout all space, with,

M(P)(r < a) = −r×
∫ 1

0

u du ρω (ur) sin θ φ̂ =
ρωr2 sin θ

3
θ̂ (Poincaré), (15)

M(P)(r > a) = −r ×
∫ a/r

0

u du ρω (ur) sin θ φ̂ =
ρωa3 sin θ

3r
θ̂ (Poincaré), (16)

which vanishes at the origin.
The magnetization of eq. (9) is nonzero only inside the rotating sphere, with,

M(T)(r < a) = r ×
∫ a/r

1

u du ρω (ur) sin θ φ̂ = −ρω sin θ
a3 − r3

3r
θ̂ (Trammel), (17)

which vanishes at the surface of the sphere, and diverges at the origin.
While the Poincaré-gauge equivalent magnetization (15)-(16) is well behaved at the origin,

it is nonzero outside the physical sphere. In contrast, the Trammel-gauge magnetization (17)
is zero outside the physical sphere, but diverges at the origin. Both equivalent magnetizations
are “mathematical fictions” without direct “physical reality”.
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2.6 Relativistic Equivalents for Charge and Current Densities

We can devise a relativistic generalization of eq. (1) by introducing the four vectors and
tensors,

Jα = (cρ,J), ∂β =

(
∂

∂ct
, ∇
)

, Mαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 cPx cPy cPx

−cPx 0 −Mx My

−cPy Mz 0 −Mx

−cPz −My Mx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (18)

where P is the density of electric-dipole moments (polarization density) and c is the speed
of light in vacuum. Then, in the Einstein notation that aαbα =

∑3
μ=0 aμb

μ, we could write,

Jα = ∂βM
βα =

(
−c∇ · P,

∂P

∂t
+ ∇ × M

)
, (19)

with the implication that the charge and current densities might be represented by equivalent
polarization and magnetization densities P and M, where,

ρ = −∇ · P, J =
∂P

∂t
+ ∇ ×M. (20)

2.6.1 Equivalent Polarization Density P in the Poincaré and Trammel Gauges

We supplement the expression (8) for the magnetization in the Poincaré gauge by the relation,

P(P)(r) = −r

∫ 1

0

u2 du ρ(ur) (Poincaré), (21)

for the polarization. Then,

− ∇ ·P(P) =

∫ 1

0

u2 du [ρ(ur)∇ · r + (r · ∇)ρ(ur)] =

∫ 1

0

u2 du

[
3ρ(ur) + u

d(uxi)

du

∂ρ(ur)

∂xi

]

=

∫ 1

0

u2 du

{
1

u2

d

du

[
u3ρ(ur)

]}
= ρ(r), (22)

such that the first of eq. (20) is satisfied. Also,

∂P(P)

∂t
= −

∫ 1

0

u2 du r
∂ρ(ur)

∂t
=

∫ 1

0

u2 du r
∂Ji(ur)

∂(uxi)
=

∫ 1

0

u du r[∇ · J(ur)], (23)

which cancels the term − ∫ 1

0
u du r[∇ · J(ur)] that arises when computing ∇ × M(P) for a

nonsteady current density J (recalling eq. (7) for ∇ × A(P) in terms of the magnetic field
B).

That is, the expression (8) (and also (9)) for the equivalent magnetization density M is
also valid when ∇ · J �= 0, in which case ∇ × M = J − ∂P/∂t.

Similarly, the polarization density in the Trammel gauge is,

P(T)(r) = r

∫ ∞

1

u2 du ρ(ur) (Trammel), (24)

which as before only applies when the fields fall off sufficiently quickly at large distances.
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2.7 Examples Where ∇ · J �= 0

2.7.1 Uniform Sphere of Charge with v � c

We consider a uniform sphere of charge density ρ, of radius a and centered on the origin in
its rest frame, in the “lab” frame where the charge has velocity v = v ẑ with v � c, such
that the volume or charge is essentially spherical. At the time when the charge is centered
on the origin in the lab frame, the current and current densities are, with neglect of terms
of order v2/c2,

ρ(r < a) = ρ, J(r < a) = ρv ẑ, (25)

and zero for r > a.
In the Poincaré gauge, the equivalent polarization density is,

P(P)(r < a) = −r

∫ 1

0

u2 du ρ = −ρr

3
r̂ (Poincaré), (26)

P(P)(r > a) = −r

∫ a/r

0

u2 du ρ = −ρa3

3r2
r̂ (Poincaré), (27)

for which −∇ · P = −(1/r2)d(r2Pr)/dr = ρ for r < a and zero for r > a. Similarly, the
equivalent magnetization is,

M(P)(r < a) = −r ×
∫ 1

0

u du ρv ẑ = −ρrv sin θ

2
φ̂ (Poincaré), (28)

M(P)(r > a) = −r×
∫ a/r

0

u du ρv ẑ = −ρa2v sin θ

2r
φ̂ (Poincaré). (29)

Both the equivalent polarization and magnetization are nonzero throughout all space.
In the Trammel gauge, the equivalent polarization density is nonzero only for r < a,

P(T)(r < a) = r

∫ a/r

1

u2 du ρ =
ρ(a3 − r3)

3r2
r̂ (Trammel), (30)

which diverges at the origin. Similarly, the equivalent magnetization is,

M(T)(r < a) = r ×
∫ a/r

1

u du ρv ẑ = −ρv(a2 − r2) sin θ

2r
φ̂ (Trammel), (31)

which also diverges at the origin.

2.7.2 Current Loop with Velocity along Its Axis

We consider again the current loop of sec. 2.3.1, now with velocity v = v ẑ, where v � c,
at the moment when the loop is centered on the origin. With neglect of effects of order
v2/c2, the shape of the loop is the same as in its rest frame, and the loop can be regarded as
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electrically neutral in that frame.12 That is, in the rest frame the charge density is ρ� = 0 (at
order v/c) and the current density is J� = J φ̂. Then, in the lab frame the charge density is
ρ = γ(ρ�+J�·v/c2) = γρ� = 0, and the current density is J = J�+(γ−1)(J� ·v̂)v̂−γρ�v = J�,
where γ = 1/

√
1 − v2/c2 ≈ 1. Since the charge and current densities are the same in the

lab frame as in the rest frame, the equivalent magnetization M in the lab frame is the same
as that found in sec. 2.3.1 (and the equivalent polarization density P is zero).

2.7.3 Current Loop with Velocity in Its Symmetry Plane

We consider again the current loop of sec. 2.3.1, now with velocity v = v x̂, where v � c,
at the moment when the loop is centered on the origin. With neglect of effects of order
v2/c2, the shape of the loop is the same as in its rest frame, and the loop can be regarded
as electrically neutral in that frame. That is, in the rest frame the charge density is ρ� = 0
and the current density is J� = J φ̂ = J(cosφ x̂+sinφ ŷ). Then, in the lab frame the charge
density is,

ρ = γ

(
ρ� +

J� · v
c2

)
≈ Jv cos φ

c2
, (32)

and the current density is,

J = J� + (γ − 1)(J� · v̂)v̂ − γρ�v ≈ J� = J φ̂. (33)

Since the current density is the same in the lab frame as in the rest frame, the equivalent
magnetization M in the lab frame is the same as that found in sec. 2.3. However, the nonzero
charge density (32) in the lab frame implies that there is a nonzero equivalent polarization
density P as well.

In the Poincaré gauge, the lab-frame equivalent polarization density is,

P(P)(r1 < r < r2) = −r

∫ 1

r1/r

u2 du ρ = −ρ(r3 − r3
1)

3r2
r̂ = −Jv(r3 − r3

1) cos φ

3c2r2
r̂ (Poincaré),(34)

P(P)(r > r2) = −r

∫ r2/r

r1/r

u2 du ρ = −ρ(r3
2 − r3

1)

3r2
r̂ = −Jv(r3

2 − r3
1) cos φ

3c2r2
r̂ (Poincaré),(35)

which (like the magnetization) is nonzero outside the current loop.
In the Trammel gauge, the lab-frame equivalent polarization density is,

P(T)(r < r1) = r

∫ r2/r

r1/r

u2 du ρ =
ρ(r3

2 − r3
1)

3r2
r̂ =

Jv(r3
2 − r3

1) cos φ

3c2r2
r̂ (Trammel), (36)

P(T)(r1 < r < r2) = r

∫ r2/r

1

u2 du ρ =
ρ(r3

2 − r3)

3r2
r̂ =

Jv(r3
2 − r3

1) cos φ

3c2r2
r̂ (Trammel),(37)

which (like the magnetization) diverges at the origin.

Thanks to David Griffiths for e-discussions of this problem.

12At order v2
e/c2, where ve is the drift velocity of the conduction electrons, the current loop would have

a small bulk charge density in its rest frame, whose resulting electric field would cancel the J ×B force on
the current [19].
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A Appendix: Is a Magnetization M Due to Electric

Currents or Magnetic Poles? (July 30, 2022)

As reviewed in [20] and in secs. 5.6-7 of [21], Fermi [22] gave a quantum argument in 1930
that details of the hyperfine interaction imply that the magnetic moment of nuclei (including
the proton) is Ampèrian rather than Gilbertian. Subsequent experiments confirmed that the
magnetic moment of the neutron is Ampèrian [20, 23]. As noted in [20], Fermi’s argument can
also be applied to positronium (e+e−) and to muonium (e±μ∓), in which cases the “nucleus”
is an electron or muon, such that the data indicate the magnetic moments of electrons and
muons to be Ampèrian. That is, magnetization M, which is an effect of atomic electrons, is
Ampèrian rather than Gilbertian.
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