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1 Problem

The problem of a ladder that slides without friction while touching a floor and wall is often
used to illustrate Lagrange’s method for deducing the equation of motion of a mechanical
system. Suppose the ladder has mass m, length 2l, and makes angle θ to the vertical. Deduce
the equation of motion via a torque analysis about each of the five points A, B, C , D and E
as shown in the figure below. All of these points except A are accelerating in the lab frame.1

A typical statement of the ladder problem is to ask at what angle θ does the ladder lose
contact with the vertical wall if it starts from rest at θ = 0 (and the bottom of the ladder is
given a tiny horizontal velocity).

2 Solution 2

2.1 Lagrange’s Method

We use θ as the single generalized coordinate. The center of mass of the ladder, at point B,
moves in a circle of radius l about the fixed point A. The moment of inertia of the ladder
about its center of mass is,

Icm =
m l2

3
. (1)

1This problem appears as ex. 2, art. 145 of [1]. This note was inspired in part by comments in [2]-[9].
2A solution to this problem that avoids use of the equation of motion is given at [10].
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The kinetic energy T of the sliding ladder consists of the kinetic energy of the motion of the
center of mass plus the kinetic energy of rotation about the center of mass,

T =
m v2

cm

2
+

Icm θ̇
2

2
=

m (lθ̇)2

2
+

m l2 θ̇
2

6
=

2m l2 θ̇
2

3
. (2)

The gravitational potential energy V of the ladder relative to the floor is,

V = m g l cos θ. (3)

The equation of motion of the ladder follows from Lagrange’s equation,

d

dt

∂L
∂θ̇

=
∂L
∂θ

, (4)

where the Lagrangian is L = T − V . From eqs. (2)-(4) we find that,

θ̈ =
3g

4l
sin θ. (5)

The ladder loses contact with the vertical wall when (horizontal) contact force Fw van-
ishes. This contact force causes the horizontal acceleration of the center of mass,

Fw = m ax. (6)

The x and y coordinates of the center of mass (so long as the ladder remains in contact with
the wall) are,

xcm = l sin θ, ycm = l cos θ, (7)

so the acceleration a of the center of mass has components,

ax = ẍcm = l cos θ θ̈ − l sin θ θ̇
2
, ay = ÿcm = −l sin θ θ̈ − l cos θ θ̇

2
. (8)

The angular velocity θ̇ of the ladder follows from conservation of energy,

E0 = m g l = E = T + V, (9)

so that3

θ̇
2

=
3g

2l
(1 − cos θ). (10)

The ladder loses contact with the vertical wall when Fw = m ax vanishes, which occurs when
cos θ = 2/3, using eqs. (5), (8) and (10).4

3The equation of motion (5) can also be deduced by taking the time derivative of eq. (10), or conversely
the energy equation (9) could be obtained by integrating the equation of motion (5).

4If the ladder started from rest at angle θ0, it would lose contact with the wall when cos θ = 2 cos θ0/3.
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2.2 Torque Analysis About Point A

A Newtonian approach to the equation of motion of the sliding ladder is based on a torque
analysis about some point. If that point is at rest, the torques are due only to the forces
that are apparent in the lab frame. However, if the point is accelerating, there are addi-
tional (“fictitious”) torques due to apparent forces associated with the use of an accelerated
coordinate system.5

First, we consider an analysis about point A, which is fixed in the lab frame.
The torque equation is,

dLA

dt
= τA = 2Ff l sin θ − m g l sin θ − 2Fw l cos θ, (11)

where LA is the angular momentum of the ladder about point A, and a torque is positive if
its vector points along the +z axis in a right-handed coordinate system.

A subtlety of the torque analysis about point A (and about point E) is that the rotation
of the ladder is not rigid body rotation about this point, so the angular momentum is not
the product of the momentum of inertia about point A times the angular velocity θ̇.

In general, the angular momentum of a rigid body with respect to a point equals the
angular momentum of the center of mass motion with respect to that point, plus the angular
momentum of the body relative to the center of mass.

The angular momentum of the center of mass motion of the ladder relative to point
A is −ml2 θ̇, while the angular momentum of the ladder relative to the center of mass is
Icm θ̇ = ml2 θ̇/3, recalling eq. (1) and noting that the senses of these two rotations are
opposite. Thus, the total angular momentum of the ladder about point A is,

LA = −m l2 θ̇ +
m l2 θ̇

3
= −2m l2 θ̇

3
. (12)

We note that the moment of inertia of the ladder about point A (as well as that about
points C , D and E) follows from the parallel axis theorem,

IA = IC = ID = IE = Icm + m l2 =
4

3
m l2. (13)

But this moment of inertia is relevant only if the rotation of the center of mass about the
point of reference and the rotation with respect to the center of mass are equal in magnitude
and sign. In the present example this is true for points C and D but not points A and E.
In particular, LA of eq. (12) does not equal −IAθ̇.

As previously discussed in eq. (6), the horizontal force Fw equals the mass of the ladder
times the horizontal acceleration of its center of mass, so that,

Fw = m ax = m l cos θ θ̈ − m l sin θ θ̇
2
. (14)

Similarly, the vertical force Ff is related to the vertical acceleration of the center of mass
according to Ff − m g = m ay, so that,

Ff = m g + m ay = m g − m l sin θ θ̈ − m l cos θ θ̇
2
. (15)

5Other forms of torque analyses are possible, as reviewed in the Appendix below.
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Combining the torque equation (11) with eqs. (12), (14) and (15) we find,

dLA

dt
= −2

3
m l2 θ̈ = τA = 2m g l sin θ − 2m l2 sin2 θ θ̈ − 2m l2 cos θ sin θ θ̇

2

−m g l sin θ − 2m l2 cos2 θ θ̈ + 2m l2 cos θ sin θ θ̇
2

= m g l sin θ − 2m l2 θ̈, (16)

which leads to the equation of motion (5).

2.3 Torque Analysis about Point B

Points B-E are accelerating, so the torque analyses about these points must include the
effect of the “coordinate” force,

FP = −m aP , (17)

that appears to act on the center of mass according to an observer at a point P that is
accelerating with respect to the lab frame.6

However, if the point of reference is the center of mass of the system, the “coordinate”
force (17) causes no torque, so a torque analysis about the center of mass has the same form
whether or not the center of mass is accelerating.

Point B is the center of mass of the ladder. The angular momentum about point B is
therefore,

LB = Icm θ̇, (18)

and the torque equation is,

dLB

dt
=

m l2 θ̈

3
= τB = Ff l sin θ − Fw l cos θ

= m g l sin θ − m l2 sin2 θ θ̈ − m l2 cos θ sin θ θ̇
2

−m l2 cos2 θ θ̈ + m l2 cos θ sin θ θ̇
2

= m g l sin θ − m l2 θ̈, (19)

which again leads to the equation of motion (5).

2.4 Torque Analysis About Point C

Point C has coordinates (0, 2ycm) so the “coordinate” force associated with taking this point
as our reference point for a torque analysis is,

FC = (0,−2m ÿcm) =
(
0, 2m l sin θ θ̈ + 2m l cos θ θ̇

2
)

, (20)

recalling eq. (8).

6This result is discussed on p. 168 of [11]. See also eq. (40) below, and eq. (39.7) of [12] taking the
angular velocity Ω of the frame of the accelerated point P to be zero.
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Since point C is located on the ladder, the angular momentum about point C is simply,

LC = IC θ̇ =
4m l2 θ̇

3
, (21)

recalling eq. (13). The torque analysis about point C is then,

dLC

dt
=

4m l2 θ̈

3
= τC + FC,y l sin θ = −m g l sin θ + 2Ff l sin θ + FC,y l sin θ

= −m g l sin θ

+2m g l sin θ − 2m l2 sin2 θ θ̈ − 2m l2 cos θ sin θ θ̇
2

+2m l2 sin2 θ θ̈ + 2m l2 cos θ sin θ θ̇
2

= m g l sin θ, (22)

which again leads to the equation of motion (5).7

2.5 Torque Analysis About Point D

Point D has coordinates (2xcm, 0) so the “coordinate” force associated with taking this point
as our reference point for a torque analysis is,

FD = (−2m ẍcm, 0) =
(
−2m l cos θ θ̈ + 2m l sin θ θ̇

2
, 0

)
, (23)

recalling eq. (8).
Since point D is located on the ladder, the angular momentum about point C is simply,

LD = ID θ̇ =
4m l2 θ̇

3
, (24)

recalling eq. (13). The torque analysis about point D is then,

dLD

dt
=

4m l2 θ̈

3
= τD − FD,x l cos θ = m g l sin θ − 2Fw l cos θ − FD,x l cos θ

= m g l sin θ

−2m l2 cos2 θ θ̈ + 2m l2 cos θ sin θ θ̇
2

+2m l2 cos2 θ θ̈ − 2m l2 cos θ sin θ θ̇
2

= m g l sin θ, (25)

which again leads to the equation of motion (5).

7Nov. 25, 2024. In principle, we could suppose that the reference point of the torque analysis is associated
with a rotating coordinate system with an arbitrary angular velocity Ω(t) with respect to the lab frame.
This would require consideration of “fictitious” torques associated with the “fictitious” forces miri × Ω̇ +
2mivi × Ω + miΩ × (ri ×Ω) that would act on mass mi (at ri, with velocity vi, with respect to the origin
of the rotating frame). See, for example, pp. 168-172 of [11] or eq. (39.7) of [12]. However, it appears that
additional “fictitious” torques also must be considered unless the rotating axes are those of the rest frame of
a rigid body. It remains simplest to suppose that the axes associated with a torque analysis are not rotating.
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2.6 Torque Analysis About Point E

The ordinary torques from the floor and wall about point E vanish, but we must still consider
the torques due to gravity and to the “coordinate” forces.

Point E has coordinates (2xcm, 2ycm) so the “coordinate” force associated with taking
this point as our reference point for a torque analysis is,

FE = (−2m ẍcm,−2m ÿcm) =
(
−2m l cos θ θ̈ + 2m l sin θ θ̇

2
, 2m l sin θ θ̈ + 2m l cos θ θ̇

2
)

,

(26)
recalling eq. (8).

Point E is not on the ladder, so we calculate its angular momentum as the sum of the
angular momentum of the center of mass relative to point E plus the angular momentum
relative to the center of mass,

LE = −m l2 θ̇ +
m l2 θ̇

3
= −2m l2 θ̇

3
, (27)

as for the analysis about point A. The torque analysis about point E is then,

dLE

dt
= −2m l2 θ̈

3
= τE − FE,y l sin θ = m g l sin θ + FE,x l cos θ − FE,y l sin θ

= m g l sin θ

−2m l2 cos2 θ θ̈ + 2m l2 cos θ sin θ θ̇
2

−2m l2 sin2 θ θ̈ − 2m l2 cos θ sin θ θ̇
2

= m g l sin θ − 2m l2 θ̈, (28)

which again leads to the equation of motion (5).

2.7 Comments

We have deduced the equation of motion of the sliding ladder by six methods. Of these,
Lagrange’s method is perhaps the simplest. If a torque analysis is desired, it is simplest
to use the center of mass as the reference point so that no “coordinate” forces appear in
the calculation. The use of reference points not on the ladder, such as points A and E is
complicated by the fact that the ladder is not in simple rigid-body rotation about these
points, so the angular momentum must be calculated as the sum of that of the center of
mass plus that relative to the center of mass.

A Appendix: The 5 Methods of Jensen (March 2019)

The theme of this Appendix is elaborated upon in [13].
An interesting paper by Jensen [14] comments that many torque analyses in textbooks

are misguided, but that there are (at least) 5 valid methods that can be used.8 In this

8Jensen makes no mention of Lagrange, or of the simple method of differentiating the conserved energy,
although his methods concern only examples where these techniques could be used.
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Appendix we illustrate these methods with analyses of the ladder problem based on point C
of contact of the ladder with the vertical wall.

We first recall that Newton’s second law for the momentum p = mv of a particle of
time-independent mass m at position x with velocity v = dx/dt = ẋ is,

dp

dt
=

d

dt
mv = m a = F, (29)

where a = dv/dt and F is the force on the particle. This permits one to introduce the
angular momentum L (with respect to the origin),

L = x× p = x ×mv, (30)

which for time-independent mass obeys the relation,

dL

dt
= v × mv + x× dp

dt
= x × F ≡ τ , (31)

where the torque τ is defined with respect to the origin.
For a set of particles, labeled by subscript i, of time-independent masses we can then

write,

m =
∑

i

mi, mxcm =
∑

i

mixi, mvcm =
∑

i

mivi, m acm =
∑

i

miai =
∑

i

Fi = F,(32)

which introduces quantities related to the center of mass of the system. Similarly, the total
angular momentum L of the system with respect to the origin can be written,

L =
∑

i

Li =
∑

i

mi xi × vi

=
∑

i

mi (xi − xcm) × (vi − vcm) +
∑

i

mi xi × vcm + xcm ×
∑

i

mi vi −
∑

i

mi xcm × vcm

= Lcm + mxcm × vcm + xcm × mvcm − mxcm × vcm = Lcm + xcm × mvcm, (33)

where the angular momentum Lcm with respect to the center of mass is defined by,

Lcm =
∑
−

mi (xi − xcm) × (vi − vcm). (34)

Equation (33) is the familiar decomposition of the total angular momentum with respect to
the origin as the sum of the (“spin”) angular momentum Lcm with respect to the center of
mass plus the (“orbital”) angular momentum xcm×mvcm of the system (with respect to the
origin) as if the mass were concentrated at the center of mass.

The time dependence of the total angular momentum L is related by,

dL

dt
=

∑
i

dLi

dt
=

∑
i

xi × Fi =
∑

i

τ i ≡ τ , (35)

where the total torque τ is defined with respect to the origin.
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In addition to considering angular momentum with respect to the origin and to the center
of mass, it is useful to consider it relative to a general point P that may or may not be in
motion in the inertial lab frame.

The torque τ P about point P is related to the torque τ about the origin by,

τP =
∑

i

(xi − xP ) × Fi = τ − xP × F = τ − xP × m acm. (36)

Jensen (following an interesting discussion in [15]) noted that the angular momentum
with respect to a point P can be defined in two ways.9

First Definition: (Absolute) LP

Jensen defined LP to be the angular momentum with respect to P , ignoring possible
motion of P ,10,11

LP =
∑

i

(xi − xP ) × mi vi = L − xP × mvcm = Lcm + (xcm − xP) ×mvcm. (37)

However, when considering dLP/dt, one should take the possible velocity vP into account,12

dLP

dt
=

dL

dt
− xP × m acm − vP × mvcm = τ P + mvcm × vP . (38)

Second Definition: (Relative) L′
P

If point P is moving in the lab frame, one can also define the angular momentum with
respect to P similarly to eq. (34) for that with respect to the center of mass,13,14

L′
P =

∑
i

(xi − xP ) × mi (vi − vP ) = L − xcm × mvP − xP × m (vcm − vP )

= Lcm + (xcm − xP ) × m (vcm − vP ) = LP − (xcm − xP ) × mvP . (39)

Of course, if vP = 0, then L′
P = LP .

The time derivative of L′
P is, recalling eq. (38),

dL′
P

dt
=

dLP

dt
− vcm × mvP − (xcm − xP ) ×m aP = τP + (xcm − xP ) × (−m aP ) ≡ τ ′

P . (40)

Since the moving point P defines a (nonrotating) accelerated frame, the equation of motion
of the angular momentum L′

P relative to this moving point includes the “fictitious” torque

9The angular momenta LP and L′
P are called absolute and relative, respectively, in [7].

10Our notation differs from that of Jensen [14].
11An early use in English of LP , for a fixed point P , is in art. 134 of [1]. A use of LP in an introductory

text is implicit on p. 249 of [16] in the statement: we shall require the moment of force about P to equal the
rate of change of angular momentum about P (P being the point of contact).

12Equation (38) is also deduced in sec. 11.8, p. 256 of [17] and sec. 2 of [18].
13An early use of L′

P is in sec. 4.2 of [19].
14Even when point P is moving, one can consider use of angular momentum LP rather than L′

P , so if the
angular momentum with respect to a point is not clearly defined, confusion can result.
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associated with the “fictitious” (coordinate) force −m aP that appears in this frame to act
on the center of mass of the system.

Point P is the Center of Mass of the System

In eqs. (37)-(40), the point P could be any point, moving or not. In particular, it could
be at the center of mass. In this case, eqs. (37)-(40) become,

LP = L′
P = Lcm,

dLP

dt
=

dL′
P

dt
=

dLcm

dt
= τ cm, (41)

which is the well-known torque analysis with respect to the center of mass.
Of course, computation of the torque τ cm requires knowledge of the forces that do not

act on the center of mass, such as possible contact forces between the moving body and a
surface at rest (or with known motion) in the (inertial) lab frame.

P is the Point of Contact between the Moving Body and a “Known” Surface

Following Jensen [14], we now consider point P to be at the point of contact between a
moving (rigid) body of constant mass m and a surface in the lab frame that is either at rest
or has known motion.15,16

A motivation for consideration of the point of contact is that computation the torque τ P

does not require knowledge of the contact force FP .
In general, the moving body slides with respect to the “known” surface (as in the example

of the sliding ladder), but if the motion also includes rolling (with a nonzero radius of
curvature of rolling) then different points on the body are in contact with the “known”
surface at different times. That is, the following methods are not restricted to rolling (as
implied in [14]).

If the moving (rigid) body rolls without slipping about a point P of contact on a “known”
surface, then the instantaneous motion is rigid-body rotation about the axis through P
parallel to the angular velocity vector ω, and we can write the angular momenta as,

LP = IP ω, L′
P = IP ω − (xcm − xP ) × mvP . (42)

If slipping occurs at the point of contact, these simpler forms do not hold.17

A.1 Method 1. Use LP for P on a “Known” Surface

The first method suggested by Jensen [14] considers point P on the surface whose motion is
known in the lab frame, and uses the angular momentum LP of eq. (37) even though point
P moves on that surface.

15The formalism of this Appendix so far applies to, for example, “variable-mass” problems in which the
system includes a rigid body whose mass varies with time.

16Jensen did not consider examples such as [20, 21, 22] in which a second rigid body moves in contact
with the first, and the motion of both bodies is to be determined.

17The notes in Table I of [14] appear to be for the case of rolling without slipping.

9



We now apply this method to the sliding-ladder problem for point C in the figure on p. 1.
The coordinates and velocities of point C , and of the center of mass of the ladder, are,

xcm = (l sin θ, l cos θ), vcm =
(
l θ̇ cos θ,−l θ̇ sin θ

)
, (43)

xC = (0, 2l cos θ), vC =
(
0,−2l θ̇ sin θ

)
, (44)

xcm − xC = (l sin θ,−l cos θ), vcm − xC =
(
l θ̇ cos θ, l θ̇ sin θ

)
, (45)

(xcm − xC) × vcm = l2 θ̇
(
cos2 θ − sin2 θ

)
ẑ, (46)

(xcm − xC) × (vcm − vC) = l2 θ̇ ẑ, (47)

vcm × vC = −2l2 θ̇
2
cos θ sin θ ẑ. (48)

According to eqs. (37) and (46), the angular momentum LC is,18

LC = Lcm + (xcm − xP ) × mvcm =
m l2 θ̇

3
ẑ+, l2 θ̇

(
cos2 θ − sin2 θ

)
ẑ, (49)

which does not equal,

IC ω = IC θ̇ ẑ =
4m l2 θ̇

3
ẑ, (50)

recalling eq. (13).
The torque τ C = τC ẑ about point C was given in eq. (22),

τC = −m g l sin θ + 2Ff l sin θ = m g l sin θ − 2m l2 θ̈ sin2 θ − 2m l2 θ̇
2
cos θ sin θ, (51)

so the z-component of τ̃C of eq. (38) is, recalling eq. (48),

τ̃C = τC − 2ml2 cos θ sin θθ̇
2

= m g l sin θ − 2m l2 θ̈ sin2 θ − 4m l2 θ̇
2
cos θ sin θ. (52)

The torque analysis about point C according to eq. (38) is then,

dLC

dt
=

m l2 θ̈

3
+ m l2 θ̈

(
cos2 θ − sin2 θ

) − 4m l2 θ̇
2
cos θ sin θ

= m g l sin θ − 2m l2 θ̈ sin2 θ − 4m l2 θ̇
2
cos θ sin θ (53)

4m l2 θ̈

3
= m g l sin θ, (54)

which agrees with the equation of motion (5).19

18The LC of sec. 2.4 above is L′
C in the notation of this Appendix, as discussed further in sec. A.3 below.

19The author does not agree with the claim in [14] that this method provides the simplest derivation of
the equation of motion.
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A.2 Method 2. Use LP for P on the Moving Body

This author cannot see any difference at the moment, say time t, when the body and the
surface are in contact at point P if one considers P to be on the surface or on the body,
separated by an infinitesimal difference. It is true that after a finite time interval the location
of point P is different in these two cases, but the analysis of the motion of the system is
based only on infinitesimal time differences dt from t.

Line 2 of Table I of [14] claims that the angular momentum LP is different for Methods
1 and 2, but this author cannot understand why this could be so.

In examples like the sliding ladder, where the radius of curvature of “rolling” is zero, the
history of the point of contact on the moving body and on the “known” surface are identical,
and there can be no difference between methods 1 and 2.

A.3 Method 3. Use L′
P for P on a “Known” Surface

Jensen’s method 3 considers the angular momentum L′
P of eq. (39), taken relative to the

moving point P of contact of the moving body with the “known” surface, taking point P to
lie on the “known” surface rather than on the moving body.

Applying method 3 to point C in the sliding-ladder problem, we have that, according to
eq. (39), and recalling eqs. (13) and (47),20

L′
P = Lcm + (xcm − xP ) × m (vcm − vP ) =

m l2 θ̇

3
ẑ + m l2 θ̇ ẑ =

4m l2 θ̇

3
ẑ = IC ω.(55)

Then, recalling equation of motion (40) for L′
P , we see that Jensen’s method 3 is the same as

that used in sec. 2.4 above, and so leads to the equation of motion (5) for the sliding ladder.

A.4 Method 4. Use L′
P for P on the Moving Body

In case the motion of the moving body involves rolling (with nonzero radius of curvature) on
the “known” surface, the acceleration aP of the point of contact is, in general, different for
the point of contact on the “known” surface and for that on the rolling body. Then, method
4 is different from method 3.

However, in examples like the sliding ladder, where the radius of curvature of “rolling”
is zero, the history of the point of contact on the moving body and on the “known” surface
are identical, and there can be no difference between methods 3 and 4.

Hence, method 4, when applied to the sliding ladder, also yields the equation of motion
(5).

20The result (55) is not consistent with the Note in line 3 of Table I of [14]), which Notes were presented
without justification.
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A.5 Method 5. Nominal Use of LP for P at Rest in the Lab Frame

Jensen’s method 5 follows discussion by Hu in [23] that considered the point of contact P
at some time between a rigid body that rolls without slipping and a “known” surface at rest
in the (inertial) lab frame, and regarded that point as fixed in the lab frame.

Hu considered the angular momentum LP of our eq. (37) relative to the fixed point P .21

However, it is not, in general, correct to suppose that since LP = IP ω, eq. (38) reduces to
IP ω̇ = τ P , although this happens to be valid if the body has a symmetry axis.

Instead, Hu [23] took the time derivative of eq. (37) with vP = 0, and used eq. (36),

dLP

dt
=

dL

dt
− xP × m acm = τ − xP × m acm = τ P (56)

=
dLcm

dt
+ (xcm − xP ) × m acm, (57)

dLcm

dt
= Icm ω̇ = τ P + (xcm − xP ) × (−m acm) = τ cm, (58)

Our eq. (58) corresponds to eq. (2) of [23], and indicates the close relation between Hu’s
method (in the form (56), dLP /dt = τ P ) and the torque analysis (41) with respect to the
(moving) center of mass. That is, Hu’s method in the form (58) requires knowledge of the
contact force FP , and so is not entirely in the spirit of Jensen’s catalog of torque analyses.22

For the sliding-ladder problem, Jensen’s Method 5, in the form (58) nominally about
point C, is actually the analysis about point B, the center of mass, given in sec. 2.3 above,
which of course led to the equation of motion (5).

We can also use eq. (56), noting that point A is the origin, so L = LA = −2
3
m l θ̇,

dLC

dt
=

dLA

dt
− xC × m acm = τC , (59)

−2m l2 θ̈

3
− (0, 2l cos θ, 0) × (m ax, m ay, 0)|z = 2l sin θ Ff − m g l sin θ, (60)

−2m l2 θ̈

3
+ 2m l ax cos θ = 2m l sin θ

(
g − l sin θ θ̈ − l cos θ θ̇

2
)
− m g l sin θ, (61)

−2m l2 θ̈

3
+ 2m l2 cos2 θ θ̈ − 2m l2 cos θ sin θ θ̇

2
= m l g sin θ − m l sin2 θ θ̈ −m l cos θ sin θ θ̇

2
,(62)

4m l2 θ̈

3
= m l g sin θ, (63)

as previously found in eq. (5). However, this analysis is only a small variant of that given
about point A in sec. 2.2 above, as τ A = τ C + xC × m acm.

21For a fixed point P , LP equals L′
P of eq. (39).

22A possible merit of eq. (58) is that it shows the torque τ cm about the center of mass to be the sum of
the torque τ P about the point of contact and an “effective” torque about this point in which an “effective”
force −macm acts on the center of mass.
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A.6 Comments

It appears to this author that only three of the five methods in [14] are distinct for problems
with zero radius of curvature for rolling. Only Method 1 provides an alternative torque
analysis to those given in sec. 2, should such be desired.

B Appendix: Chap. 8 of Milne’s Vectorial Mechanics

In this Appendix we transcribe Chap. 8 of [24] (1948), which showed an early awareness of
the two definitions (37) and (39) of angular momentum with respect to a point P , into the
notation of Appendix A above.

A difficulty in reading chap. 8 of [24] is that Milne used the symbol O to mean either the
fixed origin or a moving point.

B.1 Sec. 295. The Momentum of a System of Particles

While Milne used the symbol L to mean the total momentum of a system of particles, we use
this symbol for angular momentum. And, we write P for the total momentum of a system,

m =
∑

i

mi, Milne :
∑

m, (64)

P =
∑

i

mi
dxi

dt
=

∑
i

mi ẋi =
∑

i

mi vi Milne : L =
∑

m ṙ, (65)

L =
∑

i

xi × mi vi, Milne : H(O) =
∑

r ∧ m ṙ. (66)

That is, in sec. 295 of [24], symbol O refers to the origin of coordinates in an inertial frame.
Note also that Milne used the wedge symbol ∧ for the vector cross product, whereas we use
the symbol ×.

B.2 Sec. 296. Equations of Motion

Milne used the symbol P for the force vector that we write as F, and used R to mean the
total force on a system. Milne used the symbol Γ for torque, whereas we use the symbol τ ,

F =
∑

i

Fi =
dP

dt
=

∑
i

mi ẍi = m acm, Milne : R =
∑

P =
dL

dt
=

∑
m r̈,(67)

τ =
∑

i

xi × Fi, Milne : Γ(O) =
∑

r ∧ r̈, (68)

dL

dt
= τ , Milne :

dH(O)

dt
= Γ(O). (69)

In sec. 296, Milne described O as “any fixed point”, but the above transcription interprets
O as the (fixed) origin.
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B.3 Sec. 297. Principles of Linear and Angular Momentum

F = 0 ⇒ P = const, Milne : R = 0 ⇒ L = const, (70)

τ = 0 ⇒ L = const, Milne : Γ(O) = 0 ⇒ H(O) = const. (71)

B.4 Sec. 298. Motion of the Centre of Mass

In sec. 298 Milne defined the position of the center of mass with respect to the origin as r̄,

mxcm =
∑

i

mi xi, Milne : M r̄ =
∑

m r, (72)

P = m ṙcm = mvcm, Milne : L = M ˙̄r, (73)

F = m r̈cm = m acm, Milne : R = M ¨̄r. (74)

B.5 Sec. 300. Determination of the Angular Momentum about

the Origin in Terms of That about Some Other Point P

This section can be hard to follow in that Milne abruptly redefined the origin to be at O′,
and used symbol O to represent some other point. Then, he considered a particle that he
called P at some other point.

In our notation, Milne’s O is written as P , and the particle is at position xi with respect
to the origin.

Milne:

xi = xP + (xi − xP ), Milne : r′ = r0 + r, (75)

L =
∑

i

xi ×mi vi, Milne : H(O′) =
∑

r′ ∧ mv, (76)

LP =
∑

i

(xi − xP ) ×mi vi, Milne : H(O) =
∑

r ∧ mv, (77)

L = LP + xP ×
∑

i

mi vi = LP + xP ×mvcm, Milne : H(O′) = H(O) + r0 ∧ L,(78)

L = Lcm + xcm ×mvcm, Milne : H(O′) = H(C) + r̄ ∧ L. (79)

Note that eq. (77) is the same as eq. (37) of Appendix A above.
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B.6 Sec. 301. Angular Momentum about a Moving Point

In sec. 301, Milne’s O became a moving reference point, called P in the notation of Appendix
A above. Also, vector r̄ of sec. 298 was redefined to be the position of the center of mass
with respect to his point O = our point P ,

xcm − xP , Milne : r̄, (80)

vP , Milne : V, (81)

vi = vP + (vi − vP ), Milne : v = V + v′, (82)

LP = L′
P + (xcm − xP ) ×mvP , Milne : H(O) = Hr(O) + r̄ ∧ MV, (83)

That is, Milne’s Hr(O) corresponds to L′
P of our eq. (39), the angular momentum with

respect to a moving reference point.
Milne then noted that if the moving reference point is the center of mass, which he called

point G, the two definitions of relative angular momentum, his H(O) and Hr(O), our LP

and L′
P , become the same,

Lcm = L′
cm, Milne : H(G) = Hr(G). (84)

B.7 Sec. 303. Rate of Change of H(O) = LP

Milne took the time derivative of our eq. (78) to find,

dL

dt
=

dLP

dt
+ vP × mvcm + xP × m acm,

Milne :
dH(O′)

dt
=

dH(O)

dt
+ ṙ0 ∧ L + r0 ∧ dL

dt
, (85)

which is the same as the first form of our eq. (38).
Perhaps because of his redefinition of the origin O of secs. 295-299 to the O′ of later

sections, Milne did not relate dH(O′)/dt of sec. 303 to the torque about the origin, nor did
he consider the torque τP of our eq. (36) about the point P (= point O of sec. 303).

Instead, Milne remarked on the special case that his moving point O instantaneously
coincides with the origin, O′, at which time r0 = 0 and ṙ0 = V, such that eq. (85) becomes,

dL

dt
=

dLP

dt

∣∣∣∣
xP =0

+ vP × mvcm, Milne :
dH(O′)

dt
=

dH(O)

dt

∣∣∣∣
O=O′

+ V ∧ L. (86)

He then specialized this result even further, supposing that point O is the center of mass G,

dL

dt

∣∣∣∣
xP =xcm=0

=
dLcm

dt

∣∣∣∣
xP =xcm=0

, Milne :
dH(G′)

dt
=

dH(G)

dt

∣∣∣∣
G=G′

. (87)

Milne seemed to consider this rather trivial result so important that he devoted sec. 304 to
further discussion of it.
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B.8 Sec. 305. Rate of Change of Hr(G) = L′
cm

Milne next recalled our eq. (84), which when used in eq. (87) implies the somewhat trivial
relation,

dL

dt

∣∣∣∣
xcm=0

=
dL′

cm

dt
, Milne :

dH(G′)
dt

=
dHr(G)

dt
. (88)

B.9 Sec. 306. Rate of Change of Hr(O) = L′
P when xP = 0

In this section, Milne inserted our eq. (83) into our eq. (86) to obtain, when O = O′ (xP = 0),

dL

dt
=

dL′
P

dt

∣∣∣∣
xP =0

+
d

dt
[(xcm − xP ) × mvP ] + vP ×mvcm =

dL′
P

dt

∣∣∣∣
xP =0

+ xcm × m
dvP

dt
,

Milne :
dH(O′)

dt
=

dHr(O)

dt

∣∣∣∣
O=O′

+ V ∧ L +
d

dt
[r̄ ∧ M V]O=O′ =

dHr(O)

dt

∣∣∣∣
O=O′

+ r̄ ∧ M
dV

dt
.(89)

This is as close as Milne came to our general relation (40), that could also have been written
in the less insightful form,

dL′
P

dt
=

dL

dt
− xcm × m aP + xP × m (aP − acm), (90)

which reduces to eq. (89) when xP = 0.

B.10 Comments

Despite the formal development of the two definitions of angular momentum about an arbi-
trary, and in general moving, point in Chap. 8 of [24], when Milne turned to specific examples
in Chap. 15, he recommended (sec. 373) that the torque analyses be made with respect to
the center of mass, or about a fixed point of the motion if that exists.

The author finds Milne’s treatments of the specific examples to be noteworthy, and even
rather entertaining as in the case of the “golfer’s nemesis” in sec. 421 that considers a sphere
which rolls without slipping inside a vertical cylinder, displaying a vertical oscillation such
that a golf ball could roll down into the cup and then move back up and out!23,24

Thanks to Amin Rezaeezadeh for e-discussions of this problem.
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