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1 Problem

A lasso is a rope of linear mass density ρ that ends in a loop/honda; the other end of the
rope is feed through the honda to create a large loop (the noose). The remaining length of
rope is called the spoke. See, for example, [1].

1. Consider the case that a circular noose of radius r is spinning a (nearly) horizontal
plane with angular velocity ω. The spoke is supported above the center of the noose
and makes angle θ to the vertical.1 There is no friction between the rope and the
honda. What is the tension T in the noose? What should the mass mh of the honda
be such that the force of the spoke on the honda does not perturb the shape of the
noose, as seen in the figure on the next page?

1In practice the point of support of the spoke is driven in a small circle. See, for example, sec. 1.4 of [1].
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2. Suppose the noose of part 1 is subject to a transverse disturbance that results in a
wave which propagates opposite (in the frame of the noose) to the sense of rotation
of the noose (in the lab frame). What is the angular velocity of propagation of this
disturbance in the lab frame? What does this imply about the shape of the perturbed,
spinning noose in the lab frame?

3. The plane of the noose in parts 1 and 2 is not actually horizontal. For a better
approximation to the motion of a lasso spun “horizontally”, suppose a noose of radius r
and mass mn = 2πrρ, as found in part 1, is spun with angular velocity ω about the
vertical while supported by a spoke of length L = r/ sin θ and mass ms = Lρ such that
the center of the hoop is constrained to be directly below the upper end of the spoke.
Deduce an expression for the (small) angle α of the plane of the hoop to the horizontal.

4. Suppose now the noose is spun in a vertical plane that also contains the spoke, such
that the angular velocity ω of the (circular) noose is constant. In this case the center
of mass of the noose cannot be at rest. Show that the desired motion of the notion is
possible if the end of the spoke is forced to move in a small vertical circle of radius a
at constant angular velocity ω.

Consider the case that the radius r of the noose equals the length L of the spoke, and
a � r. How must the cowboy adjust the tension in the spoke (close to the honda) as a
function of its angle? What is the minimum value of ω, below which the noose would
collapse? What should the mass mh of the honda be such that the force of the spoke
on the honda does not perturb the shape of the noose?

The author of [1] performing the “Texas skip”:
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2 Solution

1. Let T be the tension of the rope in the noose, and therefore also in the spoke just on
the other side of the honda. An angular segment dφ of the spinning noose has mass
dm = ρr dφ, so the inward radial force T dφ on this segment obeys,

T dφ = dmω2r = ρω2r2 dφ, i .e., T = ρω2r2. (1)

The tension T in the spoke just above the honda exerts an inward radial force of T sin θ.

If the honda has no mass other than the linear mass density ρ of the rope, the horizontal
component T sin θ of tension in the spoke would deform the noose inwards at the honda.
However, if the honda has mass mh (due, say, to wrapping the honda with a heavy
metal wire), it will execute uniform circular motion in the horizontal plane of the noose
(and transmit no horizontal force to the noose) provided,

mhω
2r = T sin θ = ρω2r2 sin θ, i .e., mh = ρr sin θ. (2)

The weight 2πρrg of the noose plus the added weight ρrg sin θ of the honda is supported
by the vertical component of the tension T cos θ = ρω2r2 cos θ in the spoke just above
that honda. That is,

ρω2r2 cos θ = (2π + sin θ)ρrg. (3)

and so,

r =
(2π + sin θ)g

ω2 cos θ
. (4)

Thus, the size of the noose depends on the angular velocity ω and the angle θ of the
spoke.

2. The speed c of transverse waves on the noose is, recalling eq. (3),

c =

√
T

ρ
= ωr. (5)

Thus, the angular velocity ωp with respect to the lab frame of a radial perturbation
that moves opposite to the sense of rotation of the noose is,

ωp =
c

r
− ω = 0. (6)

Hence, to an observer in the lab frame, the shape of the perturbed noose does not
change with time, although the noose is “rotating through the perturbation”.

3. A vertical section of a lasso with an almost horizontal noose is sketched below.
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Assuming that the center of the noose is under point of support of the spoke, and that
the length L of the spoke is related to the radius r of the noose by L = r/ sin θ, the
angles α and β ≈ θ are related by,

L sin β = r cos α, sinβ =
r

L
cosα = sin θ cosα, cos β =

√
1 − sin2 θ cos2 α, (7)

β̇ = − sin θ sin α√
1 − sin2 θ cos2 α

α̇, (8)

and the angle α can be taken as the single coordinate of the system. The equation of
motion for the system can be gotten from Lagrange’s equation,

d

dt

∂L
∂α̇

=
∂L
∂α

, where L = KE − PE. (9)

The potential energy of the system, relative to the point of support of the spoke is,

PE = −msgL cos β

2
− mng(L cos β + r sinα) − mhgL cos β

= −
(ms

2
+ mn + mh

) gr

sin θ

√
1 − sin2 θ cos2 α − mngr sinα. (10)

The kinetic energy of the spoke, assuming the lasso rotates about the vertical with
fixed angular velocity ω, is,

KEs =
ms(L sin β)2ω2/3

2
+

msL
2β̇

2
/3

2
=

msr
2ω2 cos2 α

6
+

msr
2 sin2 α α̇2

6(1 − sin2 θ cos2 α)
, (11)

the kinetic energy of the honda is,

KEh =
mh(L sin β)2ω2

2
+

mhL
2β̇

2

2
=

mhr
2ω2 cos2 α

2
+

mhr
2 sin2 α α̇2

2(1 − sin2 θ cos2 α)
, (12)

and the kinetic energy of the noose is,

KEn =
mn(r cos α α̇ − L sinβ β̇)2

2
+

ω · In · ω
2

=
mnr

2 cos2 α α̇2

2

(
1 +

sin θ sinα√
1 − sin2 θ cos2 α

)2

+
ω · In · ω

2
, (13)
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where the inertia tensor In is diagonal with respect to the body axes of the noose, whose
symmetry axis we label as 3. That is, I11 = I22 = mnr

2/2 while I33 = mnr
2. The

angular velocity vector with respect to the body axes is ω = (α̇ + ω sin α, 0, ω cos α),
and so,

KEn =
mnr

2

2

{
α̇2 + 2α̇ω sinα + ω2 sin2 α

4

+ cos2 α

⎡
⎣ω2 + α̇2

(
1 +

sin θ sinα√
1 − sin2 θ cos2 α

)2
⎤
⎦
⎫⎬
⎭ (14)

For steady motion (with α̇ = 0 = α̈), eq. (9) reduces to,

∂L
∂α

=
∂KE(α̇ = 0)

∂α
− ∂PE

∂α
= 0. (15)

From eqs. (11)-(16) and (14) we have that,

KE(α̇ = 0) =
(mh + ms/3)r

2ω2 cos2 α

2
+

mnr2ω2

2

(
sin2 α

4
+ cos2 α

)

=
(mh + ms/3)r

2ω2 cos2 α

2
+

mnr2ω2

8
(1 + 3 cos2 α). (16)

Using eqs. (10) and (16) in eq. (15), we find,

−(mh + ms/3)r
2ω2 cos α sinα − 3mnr2ω2 cosα sinα

4

= −
(ms

2
+ mn + mh

) gr

sin θ

sin2 θ cosα sinα√
1 − sin2 θ cos2 α

− mngr cosα. (17)

This has the trivial solution that cos α = 0, in which case the noose rotates in a
vertical plane. The nontrivial solution (for small angle α) is, recalling eq. (4) and that
ms = mn/2π sin θ and mh = sin θ mn/2π,

α ≈ mng

ω2r(3mn/4 + mh + ms/3) − (mn + mh + ms/2)g tan θ

=
cos θ

(2π + sin θ)(3/4 + sin θ/2π + 1/6π sin θ) − sin θ − sin2 θ/2π − 1/4π
. (18)

Example: For θ = 45◦, α ≈ 7◦.

An analysis of oscillations about the equilibrium value of α for small θ is given in [2].

4. We first assume that the end of the spoke is driven in a very small vertical circle, and
that the radius r of the noose equals the length L of the spoke, such that the center of
the noose is essentially at the end of the spoke, which is nearly at rest.

If the noose is to move in a vertical circle of radius r at angular velocity ω, then the
tension in the noose must vary with angle φ, defined to be π/2 at the top of the noose.
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Assuming that the center of the noose is at rest, the inward radial force on a segment
of the noose of angular width dφ must be dm ω2r = ρω2r2 dφ, such that,

T dφ + ρgr sinφdφ = ρω2r2 dφ, i .e., T (φ) = ρω2r2 − ρgr sin φ. (19)

Since the tension is positive everywhere, we must have that,

ω >

√
g

r
, (20)

i.e., the angular velocity must be greater than that of a simple pendulum of length r.

The preceding argument appears to conflict with the following: The tangential force on
a segment of angular width dφ must be zero if the angular velocity ω is to be constant,

T ′ dφ − ρgr cos φdφ = 0, i .e., T (φ) = T0 + ρgr sinφ. (21)

The spoke exerts an inward force T (φ) on the noose at the position of the honda, taken
to be angle φ. If the honda has no mass other than the linear mass density ρ of the
rope, the tension of the spoke would deform the noose inwards at the honda. However,
if the honda has mass mh, it will execute uniform circular motion (and transmit no
force to the noose) provided,

mhω
2r = T (φ) + mhg cos φ = ρω2r2 − ρgr cos φ + mhg cos φ, (22)

which implies that we must have,
mh = ρr. (23)

The weight of the honda appropriate for a vertical loop is somewhat larger than that
in eq. (2) for a horizontal loop of the same radius.

We now give a more detailed analysis of the motion of the lasso in a vertical plane
using a coordinate system with origin at the center of the circle of radius a around
which the end of the spoke is driven at constant angular velocity ω. The line from the
origin to the end of the spoke makes angle φ = ωt now measured with respect to the
horizontal x-axis.
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The coordinates of the end of the spoke are,

xe = a cosωt, ye = a sinωt. (24)

The coordinates and velocity of the center of the spoke are,

xs = xe +
L

2
cos φs, ys = ye +

L

2
sinφs, (25)

v2
s = ẋ2

s + ẏ2
s = a2ω2 +

L2φ̇
2

s

4
+ aLωφ̇s cos(φs − ωt) , (26)

where φs is the angle of the spoke with respect to the horizontal. Similarly, the coor-
dinates and velocity of the honda are,

xh = xe + L cos φs, yh = ye + L sinφs, (27)

v2
h = ẋ2

h + ẏ2
h = a2ω2 + L2φ̇

2

s + 2aLωφ̇s cos(φs − ωt). (28)

Also, the coordinates and velocity of the center of the (circular) noose are,

xn = xh + r cos φn, yn = yh + r sinφn, (29)

v2
n = a2ω2+L2φ̇

2

s+r2φ̇
2

n+2aLωφ̇s cos(φs−ωt)+2arωφ̇n cos(φn−ωt)+2rLφ̇nφ̇s cos(φn−φs).
(30)

where φn is the angle of the line from the honda to the center of the noose with respect
to the horizontal.

The potential energy of the system is,

PE = g(msys + mhyh + mnyn) (31)

= g{(mh + ρL + 2πρr)a sinωt + (2mh + ρL + 4πρr)
L

2
sinφs + 2πρr2 sinφn},

7



noting that the mass of the noose is mn = 2πρr and that of the spoke is ms = ρL.
The kinetic energy of the system is,

KE =
msv

2
s

2
+

Isφ̇
2

s

2
+

mhv
2
h

2
+

mnv
2
n

2
+

Inφ̇
2

n

2

=
ρa2Lω2

2
+

ρL3φ̇
2

s

6
+

ρaL2ω

2
φ̇s cos(φs − ωt)

+
mha

2ω2

2
+

mhL
2φ̇

2

s

2
+ mhaLωφ̇s cos(φs − ωt)

+πρa2rω2 + πρrL2φ̇
2

s + 2πρr3φ̇
2

n + 2πρarL2ωφ̇s cos(φs − ωt)

+2πρar2ωφ̇n cos(φn − ωt) + 2πρr2Lωφ̇n cos(φn − φs), (32)

noting that the relevant moment of inertia of the spoke is Is = msL
2/12 = ρL3/12,

and that of the noose is In = mnr
2 = 2πρr3.

We seek a solution for steady motion, φ̈n = φ̈s = 0, φ̇n = φ̇s = ω, in which case the
terms d/dt(∂L/∂φ̇n) and d/dt(∂L/∂φ̇s) vanish in Lagrange’s equations for coordinates
φn and φs. We write φn = ωt + φ0n and φs = ωt + φ0s, such that kinetic energy
simplifies to,

KEsteady =

(
ρL

2
+ mh + 2πρr

)
aLω2 cos φ0s + 2πρar2ω2 cos φ0n

+2πρr2Lω2 cos(φ0n − φ0s) + constant. (33)

The system is now described by the two “coordinates” φ0n and φ0s, for which Lagrange’s
equations of motion are,

d

dt

∂KE

∂φ̇0n

= 0 =
∂(KEsteady − PE)

∂φ0n

= −2πρar2ω2 sinφ0n − 2πρar2ω2 sin(φ0n − φ0s) − 2πρr2g cosφ0n, (34)

and,

d

dt

∂KE

∂φ̇0s

= 0 =
∂(KEsteady − PE)

∂φ0s

= −
(

ρL

2
+ mh + 2πρr

)
aLω2 sinφ0s + 2πρar2ω2 sin(φ0n − φ0s)

−(2mh + ρL + 4πρr)
gL

2
cos(φ0s). (35)

A particularly interesting solution would be L = r and φ0n = φ0s + π, for which the
center of the noose coincides with the end of the spoke, (xn, yn) = (xe, ye). Then,
eqs. (34)-(35) imply that,

tan φ0n = − g

2aω2
= tan φ0s = − g

aω2
. (36)
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This cannot be true in general, but if a � g/ω2 we obtain a solution with r = L,
φ0s ≈ −π/2 and φ0n ≈ π/2.

We return to the issue of the apparent conflict between eqs. (19) and (21), and consider
the case that r = L, φ0s ≈ π/2 ≈ −φ0n, as shown below.

An element dm = ρ r dφ on the noose at angle φ = ωt + φ0 has coordinates,

x = a cosωt + r cos φ, y = a sinωt + r sinφ, (37)

and acceleration

ẍ = −ω2x = −ω2(a cos ωt + r cos φ), ÿ = −ω2y = −ω2(a sin ωt + r sinφ). (38)

The inward and tangential components of the acceleration (with respect to the center
of the noose) are,

ain = −ẍ cosφ − ÿ sinφ = ω2[r + a cos(φ − ωt)], (39)

aφ = −ẍ sinφ + ÿ cosφ = ω2a sin(φ − ωt). (40)

The equations of motion for the element dm are,

ρr dφ ain = ρr dφ ω2[r + a cos(φ − ωt)] = T dφ + ρg dφ sinφ, (41)

ρr dφ aφ = ρr dφ ω2a sin(φ − ωt) = T ′ dφ − ρg dφ cos φ. (42)

The radial equation of motion (41) leads to,

T (φ) = ρrω2[r + a cos(φ − ωt)] − ρg sin φ, (43)

which differs only slightly from eq. (19) for a � r. The azimuthal equation of motion
(42) integrates to,

T (φ) = T0 − ρrω2a cos(φ − ωt)] + ρg sinφ, (44)

so we again have trouble?????
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