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1 Problem

The Biot-Savart force density f on a conduction-current density Jcond in a magnetic field is
commonly written (in SI units) as,

fBiot−Savart = Jcond × B, (1)

which is verified by experiment when the current flow in a magnetic medium, provided the
field B used in eq. (1) is the “initial” field that would exist in the absence of the current.1,2,3

The extrapolation of eq. (1) to a single charge q with velocity v,

FLorentz = qv × B, (3)

has been verified experimentally when the charge moves inside a magnetic medium for which
B is much larger than μ0H [15].

It is sometimes preferable that the force law be given in term of the total magnetic field
on the current, in which case it is generally best (in the author’s opinion) to use the Maxwell
stress tensor [3]. In 1908 Einstein and Laub [10, 16, 17] argued that the force density could be
written in terms of the total H field and the magnetization density M (of quantum magnetic
dipoles) in the medium that supports the current law as,

fEinstein−Laub = Jcond × μ0H + μ0(M · ∇)H. (4)

The awkward second term on the right is easily neglected,4 as by Einstein himself in [19],
which has created the misimpression that the Einstein claimed the force density is just

1For reviews, see [1, 2, 3].
2When the medium that supports the current has uniform relative permeability μ, such that B = μμ0H =

μ0(H + M), the magnetization density is M = (μ − 1)H. Associated with this magnetization is the bound
current density Jbound = ∇ × M = (μ − 1)∇ × H = (μ − 1)Jcond. Hence, the total current density is
Jtotal = Jcond + Jbound = μJcond, and the Biot-Savart force density can be written as,

fBiot−Savart = Jtotal × μHi (permeable current). (2)
3Biot and Savart [4, 5] had no concept of the magnetic field B of an electric current I, and discussed

only the force on a magnetic pole p as p
∮

I dl× r̂/r2, although not, of course, in vector form. The form (1)
can be traced to Ampère (1825) [7] and Grassmann (1845) [8], still not in vector form. The vector relation
Fon 1 =

∮
1 I1 dl1×B2 at 1 appears without attribution as eq. (11) of Art. 603 of Maxwell’s Treatise [9], while

Einstein may have been the first to call this the Biot-Savart law, in sec. 2 of [10].
Heaviside, p. 551 and 559 of [11], discussed the form dF = ρE + Γ × H, where ρ is the electric charge

density and Γ = ∇ × H = J + ∂D/∂t, where J is the conduction current density J and ∂D/∂t is the
“displacement current” density. However, the present view is that the “displacement current” does not
experience a magnetic force. Lorentz himself seems to have advocated the form qv×μ0H in eq. (V), sec. 12
of [12]. See also eq. (23) of [13].

The earliest description in English of eq. (1) as the Biot-Savart law may be in sec. 7-6 of [14].
4The term μ0(M ·∇)H has dubious physical justification, as mentioned in sec. 2.3.1 of [18].
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Jcond × μ0H, which conflicts with experiment [1]. Also, it might be supposed that the
extrapolation of the Einstein-Laub force law (4) to a “point” charge q is FE−L = qv× μ0H,
which conflicts with experiment [15]; however, the H-field in eq. (4) is that inside the current,
rather than in the surrounding medium, so when extrapolating to a single charge we must
make the convention that “inside” the point charge (with unit relative permeability) the
H-field is actually B/μ0 of the surrounding medium, such that the Lorentz law (3) still
applies.

Einstein and Laub (rightly) considered that valid force densities for steady currents (in
the absence of electric fields) must predict that a system exerts no net force on itself.5,6 Using
forms (1) and (4), deduce the total force per unit length on a straight, current-carrying wire
with permanent magnetization M perpendicular to the axis of the wire.

Also, deduce the force per unit length on a permeable, current-carrying wire in an exter-
nal, transverse magnetic field using forms (1) and (4).

Can the conduction current be replaced by an effective magnetization in eq. (4)?

2 Solution

Aspects of the following were discussed by Gans in 1911 [24].

2.1 Self Force of a Permanently Magnetized Wire

In the absence of the wire the “initial” fields are zero, so form (1) immediately predicts there
to be zero self force on the wire.

The wire has radius a, carries total current I and lies along the z-axis. The permanent
magnetization M is taken to be in the x-direction. The medium surrounding the wire has
relative permeability μ.

The conduction-current density inside the wire is,

JC(r < a) =
I

πa2
, (5)

and the azimuthal magnetic field due to this current follows from Ampère’s law as,

BC(r < a) = μ0HC(r < a) =
μ0Ir

2πa2
θ̂ =

μ0I

2πa2
(−y x̂ + x ŷ), (6)

in a cylindrical coordinate system (r, θ, z). The total force on the conduction current due to
its own magnetic field is zero according to either of the force laws (1)-(4).

5Systems in which both electric and magnetic fields are present can exhibit nonzero self electromag-
netic forces [20], in which cases one must consider electromagnetic-field momentum, and even so-called
“hidden”mechanical momentum to avoid “bootstrap spaceships” [21, 22].

6Accelerated charges can be subject to the so-called radiation-reaction force q2v̈/2c2, which is a self
force (first noted by Lorentz [23], and so should be considered as part of the “Lorentz force law”). Not all
accelerated charges are subject to the radiation reaction force, since interference of the fields of the various
charges may cancel the total radiation, as for steady current loops. Also, a uniformly accelerated charge
(which is a kind of steady motion) famously experiences no self/radiation-reaction force.
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To compute the fields BM/μ0 = HM + M due to the permanent magnetization M(r <
a) = M x̂ we note that ∇ · BM/μ0 = 0 = ∇ · HM + ∇ · M, so we can say that ∇ · HM =
−∇ ·M ≡ ρM . For the present example the volume density ρM of effective magnetic charges
is zero both inside and outside the wire,7 but there is an effective surface density of magnetic
charges on the outer surface of the wire,8

σM(r = a−) = M(r = a−) · r̂ = M cos θ, (7)

and also surface density on the adjacent inner surface of the surrounding medium,

σM(r = a+) = −M(r = a+) · r̂ = −(μ − 1)H(r = a+) · r̂ = −(μ − 1)HM,r(r = a+) (8)

Then, since ∇ × HM = 0, this field can be deduced from a scalar potential, HM = −∇ΦM

where the potential ΦM has the form,

ΦM (r < a) = A
r

a
cos θ, (9)

ΦM (r > a) = A
a

r
cos θ. (10)

The matching condition at the surface of the cylinder is,

HM,r(r = a+) − HM,r(r = a−) =
2A

a
cos θ = σM (r = a−) + σM (r = a+)

= M cos θ − (μ − 1)
A

a
cos θ, (11)

such that,

A =
aM

μ + 1
, (12)

and the potential inside the cylinder is,

ΦM (r < a) =
M

μ + 1
r cos θ =

M

μ + 1
x, (13)

The interior fields are therefore,

HM(r < a) = − M

μ + 1
, BM (r < a) = μ0[HM(r < a) + M] =

μμ0M

μ + 1
, (14)

and the exterior fields are,

HM(r > a) =
BM (r > a)

μμ0

=
Ma2

(μ + 1)r2
(r̂ cos θ + θ̂ sin θ) =

Ma2

(μ + 1)r2
(x̂ cos 2θ + ŷ sin 2θ),(15)

such that Br and Hθ are continuous at the surface r = a.

7Outside the wire, B = μμ0H = μ0(H + M), M = (μ − 1)H, so ∇ · B = 0 implies that ∇ · H = 0 and
ρm,eff = −∇ · M = 0 here.

8See, for example, the Appendix of [25].
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The force FC per unit length on the conduction current JC (which has zero magnetization)
due to the fields of the magnetization M is then,

FEinstein−Laub,C =

∫
JC × μ0HM dVol = −μ0IM

μ + 1
ŷ. (16)

The force FM per unit length on the magnetization due to the fields of the conduction
current is then,

FEinstein−Laub,M =

∫
(M · ∇)μ0HC dVol =

∫
M

∂

∂x

μ0I

2πa2
(−y x̂ + x ŷ) dVol =

μ0IM

2
ŷ. (17)

Thus, the total self-force, FC +FM = (μ−1)μ0IM ŷ/2(μ+1), on the wire is nonzero for the
Einstein-Laub form (4) if the relative permeability μ of the medium surrounding the wire is
not unity.9,10 Thus, the Einstein-Laub form fails to meet their own criterion for
validity.

We can also calculate the force Fμ on the permeable medium at r > a using the force den-
sity (4) for the exterior fields (15), noting that in the permeable medium the magnetization
is given by,

M = (μ − 1)H = (μ − 1)

(
I

2πr
θ̂ +

Ma2

(μ + 1)r2
(r̂ cos θ + θ̂ sin θ)

)
, (19)

and that ∂r̂/∂θ = θ̂, ∂θ̂/∂θ = −r̂,

FE−L,μ =

∫
r>a

(M · ∇)μ0H dVol

= (μ − 1)μ0

∫ [
I

2πr2

∂

∂θ
+

Ma2

(μ + 1)r2

(
cos θ

∂

∂r
+

sin θ

r

∂

∂θ

)]
(

I

2πr
θ̂ +

Ma2

(μ + 1)r2
(r̂ cos θ + θ̂ sin θ)

)
dVol

=
(μ − 1)μ0IMa2

2π(μ + 1)

∫ ∞

a

r dr

∫ 2π

0

dθ
−r̂ sin θ + θ̂ cos θ

r4

=
(μ − 1)μ0IMa2

2π(μ + 1)

∫ ∞

a

dr

r3

∫ 2π

0

dθ (−x̂ sin 2θ + ŷ cos 2θ) = 0. (20)

2.2 Force on a Permeable Wire in an External Magnetic Field

Consider a current-carrying wire of relative permeability μ that is embedded in a medium
of relative permeability μ′. The wire runs along the z-axis, has area A, carries conduction

9For completeness, we note that the force on the magnetization due to its own field is zero using either
form (1) or (4),

Fself,Einstein,M =
∫

(M · ∇)μ0HM dVol = 0. (18)

10See the Appendix for the case that the permeable medium has inner radius b > a.
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current,

Jcond =
I

A
ẑ, (21)

and is immersed in an “initial” (external) magnetic field,

Bi = B0 x̂, Hi = H0 x̂ =
Bi

μ′μ0

=
B0

μ′μ0

x̂. (22)

The force per unit length on the wire according to eq. (1) is,

FBiot−Savart = I ẑ × B0 x̂ = IB0 ŷ, (23)

as confirmed experimentally [1]11 (and which can be deduced by several other methods as
reviewed in [3]).

Section 2.1 confirmed for a the original example of [10] that the Einstein-Laub force
density (4) results in no net magnetic force of the system on itself. This suggests that if we
write the total magnetic field as,

B = Bi + Bw, H = Hi + Hw. (24)

where Bw and Hw are the fields induced in the system by the presence of the wire, then it
would suffice to compute the force on the wire using the only the “initial” field Hi. That is,

FEinstein−Laub = μ0

∫
[Jcond × Hi + (M · ∇)Hi] dVol. (25)

Since the “initial” magnetic field Hi is uniform in space the gradient term in eq. (25) makes
no contribution for any form of magnetization M, and eq. (25) predicts the force per unit
length on the wire to be,

FEinstein−Laub = μ0IH0 ŷ =
IB0

μ′ ŷ, (26)

which differs from the “correct” result (23) when the relative permeability μ′ of the medium
surrounding the wire is different from unity.12

To clarify this discrepancy, we go into more detail, based on the “wire” shown in the
figure below from p. 545 of [10], which is a strip of magnetic material of relative permeability
μ, surrounded by a medium with relative permeability μ′.13 The initial/external magnetic
field Bi = μ′μ0Hi = B0 x̂ points downwards in the figure. The current I = I ẑ is out of the
page, so the Biot-Savart force IB0 ŷ per unit length due to the initial field acting on the
current points to the right (the +y-direction).

11Einstein and Laub [10] were aware that eq. (23) is the experimental result. It would be interesting to
know what data on this topic were available in 1908.

12This case was not considered in [10].
13In [10], μ′ = 1.
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If the strip carried no current, and its thickness a in x is much less than its width b in y,
the magnetic field inside the strip (due to the external sources) would be approximately,

Bext,in = Bi = B0 x̂, Hext,in =
Bext,in

μμ0

=
B0

μμ0

x̂, (27)

noting that the normal component of B is continuous across the boundaries at |x| = a/2.
The magnetic field inside the wire, (|x| < a/2, |y| < b/2), due to the current I in the wire is
given approximately by,

Hwire,in =
Ix

ab
ŷ, Bwire,in = μμ0Hin =

μμ0Ix

ab
ŷ. (28)

The total magnetic field inside the wire is the sum of eqs. (27) and (28),

Bin = B0 x̂ +
μμ0Ix

ab
ŷ, Hin =

B0

μμ0

x̂ +
Ix

ab
ŷ. (29)

The magnetization density M inside the wire is approximately given by,

Min = (μ − 1)Hin = (μ − 1)

(
B0

μμ0

x̂ +
Ix

ab
ŷ

)
. (30)

Then,

(Min · ∇)Hin = (μ − 1)

(
B0

μμ0

∂

∂x
− Ix

ab

∂

∂y

)(
B0

μμ0

x̂ +
Ix

ab
ŷ

)
=

(
1 − 1

μ

)
IB0

ab
ŷ. (31)

and the total force on the wire according to the Einstein-Laub prescription is,

FE−L = μ0

∫
[Jcond × Hin + (Min · ∇)Hin] dVol =

IB0

μ
ŷ +

(
1 − 1

μ

)
IB0 ŷ = IB0 ŷ, (32)

which agrees with the “correct” result (23).
However, the force of the wire on itself seems to be nonzero. To show this, we note that

the magnetic field due to the wire is, inside the wire,

Hw = Hin − Hi =

(
1

μ
− 1

μ′

)
B0

μ0

x̂ +
Ix

ab
ŷ. (33)

Then, (Min · ∇)Hw = (Min · ∇)Hin, so the self force is,

FE−L,self = μ0

∫
[Jcond ×Hw + (Min · ∇)Hw] dVol =

(
1

μ
− 1

μ′

)
IB0 ŷ +

(
1 − 1

μ

)
IB0 ŷ

=

(
1 − 1

μ′

)
IB0 ŷ. (34)
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We note that the sum of eqs. (26) and (34) is indeed the “correct” result (23), but the self
force is nonzero when the relative permeability μ′ of the medium surrounding the wire differs
from unity.

Thus, both examples in the paper [10] of Einstein and Laub demonstrate that
their form (4) is invalid, when applied to a situations only very slightly different
from those which they considered.

In their discussion of this example, Einstein and Laub first computed “effective” mag-
netic charge densities inside the wire and on its surface, and then computed forces on these
“effective” charges. However, their final form (4) is not obviously related to these “effective”
charges (which represent yet another way of making force calculations in magnetic media,
as reviewed in sec. 3.2 of [2] and sec. 7 of [3]).

2.3 Can Conduction Currents Be Replaced by an Effective
Magnetization?

A broader discussion of this topic is given in [26].
In footnote 2 we remarked that magnetization M is associated with an effective current

density,

JM = ∇ ×M. (35)

Can the conduction current JC that appears in eq. (4) be replaced by an effective magneti-
zation MC such that the Einstein-Laub force density could be written as,

fEinstein−Laub = μ0(Mtotal · ∇)H, where Mtotal = Mquantum + MC, (36)

noting that “ordinary” magnetization is actually a quantum effect not well described in
detail by classical electrodynamics?

In the thought experiment of Einstein and Laub (sec. 2.1), JC = I ẑ/πa2, so the corre-
sponding effective magnetization is,

MC =
Ir

2πa2
θ̂, such that JC = ∇ ×MC . (37)

The total magnetic field is,

H = HC + HM =
Ir θ̂

2πa2
− M x̂

2
=

I(−x̂ y + ŷ x)

2πa2
− M x̂

2
=

Ir θ̂

2πa2
− M(r̂ cos θ − θ̂ sin θ)

2
.(38)

The Einstein-Laub force per unit length on the conduction current is then,

FEinstein−Laub,C = μ0

∫
(MC ·∇)Htotal dVol

= μ0

∫
Ir

2πa2

1

r

∂

∂θ

(
Ir θ̂

2πa2
− M(r̂ cos θ − θ̂ sin θ)

2

)
dVol

=
μ0IM

4πa2

∫
(r̂ sin θ + θ̂ cos θ) dVol = 0, (39)
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which differs from that found in eq. (16), and that on the (quantum) magnetization is (as
previously found in eq. (17)),

FEinstein−Laub,M = μ0

∫
(MM · ∇)Htotal dVol

= μ0

∫
M

∂

∂x

(
I(−x̂ y + ŷ x)

2πa2
− M x̂

2

)
dVol =

μ0MI ŷ

2
. (40)

Hence, the total self force on the wire would be nonzero in the Einstein-Laub formalism
if one replaced the conduction current by an effective magnetization. We conclude that
conduction currents cannot be replaced by an effective magnetization.

2.4 Comments

The slight extensions presented here of the original test examples of Einstein and Laub [10]
of their force density (4) show that it suffers from the defect of having nonzero forces of
systems on themselves.

It is not clear to the author how Einstein and Laub arrived at their expression (4). A
possible derivation is given in Appendix B of [27], where the delicate issue of how to avoid
nonzero self forces is not discussed. The derivation starts with the Lorentz force law written
as,

f = ρtotalEtotal + Jtotal × Btotal. (41)

However, it is well known14 that this version gives incorrect results if the fields E and B
include contributions from the charge and current densities being acted upon. This defect
propagates through the derivation [27] to eq. (B.7), the Einstein-Laub force density.

Some of the methods that avoid inclusion of self forces in computations of magnetic forces
are reviewed in [3].

A Appendix: Variant on the Permanently Magnetized

Wire

In this Appendix we consider a variant of the example in sec. 2.1 in which the wire of radius
a with transverse, permanent magnetization M(r < a) = M x̂ is surrounded by vacuum for
a < r < b and then by a medium of relative permeability μ for r > b.

The conduction-current density inside the wire is, as before,

JC(r < a) =
I

πa2
, (42)

and the azimuthal magnetic field due to this current follows from Ampère’s law as,

BC(r < a) = μ0HC(r < a) =
μ0Ir

2πa2
θ̂ =

μ0I

2πa2
(−y x̂ + x ŷ), (43)

14See, for example, sec. 4 of [2].
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in a cylindrical coordinate system (r, θ, z).
To compute the fields BM/μ0 = HM + M due to the permanent magnetization M(r <

a) = M x̂ we note that ∇ · BM/μ0 = 0 = ∇ · HM + ∇ · M, so we can say that ∇ · HM =
−∇ ·M ≡ ρM . For the present example the volume density ρM of effective magnetic charges
is zero, but there are effective surface densities of magnetic charges on the outer surface of
the wire,

σM(r = a−) = M(r = a−) · r̂ = M cos θ, (44)

and also on the inner surface of the permeable medium at r > b, where M = (μ − 1)H,

σM (r = b+) = −M(r = b+) · r̂ = −(μ − 1)H(r = b+) · r̂ = −(μ − 1)HM,r(r = b+) (45)

Then, since ∇ × HM = 0, this field can be deduced from a (continuous) scalar potential,
HM = −∇ΦM where the potential ΦM has the form,

ΦM (r < a) = A
r

a
cos θ, (46)

ΦM (a < r < b) = C
r

a
cos θ + D

a

r
cos θ, (47)

ΦM (r > b) = B
a

r
cos θ. (48)

Continuity of ΦM at r = a and b fixes coefficients C and D in terms of A and B, such that,

ΦM (a < r < b) =
[
(B − A) ar +

(
b2A − a2B

) a

r

] cos θ

b2 − a2
. (49)

The matching condition at the surface r = a is,

M cos θ = σM(r = a−) = HM,r(r = a+) −HM,r(r = a−) = −∂ΦM(r = a+)

∂r
+

∂ΦM(r = a−)

∂r

=
[(

3b2 − a2
)
A − 2a2B

] cos θ

a(b2 − a2)
, (50)

and that at the surface r = b is,

HM,r(r = b+) −HM,r(r = b−) = σM (r = b+−) = −(μ − 1)HM,r(r = b+), (51)

such that,

μHM,r(r = b+) = HM,r(r = b−), (52)

A =
aM

2

(
1 − μ − 1

μ + 1

a2

b2

)
, B =

aM

μ + 1
, (53)

and the potential inside the cylinder is,

ΦM (r < a) =
M

2

(
1 − μ − 1

μ + 1

a2

b2

)
r cos θ =

M

2

(
1 − μ − 1

μ + 1

a2

b2

)
x, (54)
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The interior fields are therefore,

HM(r < a) = −M

2

(
1 − μ − 1

μ + 1

a2

b2

)
, BM (r < a) =

μ0M

2

(
1 +

μ − 1

μ + 1

a2

b2

)
, (55)

The force FC per unit length on the conduction current JC (which has zero magnetization)
due to the fields of the magnetization M is then,

FEinstein−Laub,C =

∫
JC × μ0HM dVol = −μ0IM

2

(
1 − μ − 1

μ + 1

a2

b2

)
ŷ. (56)

The force FM per unit length on the magnetization due to the fields of the conduction
current is then

FEinstein−Laub,M =

∫
(M · ∇)μ0HC dVol =

∫
M

∂

∂x

μ0I

2πa2
(−y x̂ + x ŷ) dVol =

μ0IM

2
ŷ. (57)

Thus, the total self-force, FC + FM = (μ − 1)μ0a
2IM ŷ/2(μ + 1)b2, on the wire is nonzero

for the Einstein-Laub form (4) if the relative permeability μ of the medium surrounding the
wire is not unity. As b → a the self force approaches the value found in sec. 2.1.
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