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1 Problem

A battery of voltage V and internal resistance R0 is connected across a pair of “leaky”
spherical capacitors that have inner electrode of radius r1, intermediate electrode of radius r2,
and outer electrode of radius r3 and whose gaps are filled with concentric shells of dielectrics
of differing relative permittivities, ε1 for r1 < r < r2 and ε2 for r2 < r < r3. The dielectrics
are not perfect insulators but have resistivities ρ1 and ρ2, respectively.

Find the voltage V2(t) of electrode 2 supposing that the battery is connected at time
t = 0.

The human body contains about 1016 “leaky capacitors” = the synapses of your nervous
system.

An application of a pair of “leaky capacitors” is shown below, in which the input circuit
of an oscilloscope and a passive probe each include a capacitor and resistor in series.
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2 Solution

2.1 Resistance and Capacitance

Each of the spherical shells is equivalent to a resistor in parallel with a capacitor, and the
two shells are in series, so an equivalent circuit for this problem is as shown below.

The resistance R of a spherical shell of resistivity ρ, inner radius r1 and outer radius r2

is given by,

R =

∫ r2

r1

ρ dr

4πr2
=

ρ(r2 − r1)

4πr1r2

. (1)

To calculate the capacitance C of a spherical shell capacitor filled with a dielectric of relative
permittivity ε, consider charge Q placed on the electrode at radius r1, such that the radial
electric field is E = D/ε = Q/4πε r2 (in Gaussian units), and,

V =
Q

C
=

∫ r2

r1

E dr =

∫ r2

r1

Q dr

4πε r2
=

Q(r2 − r1)

4πε r1r2

, (2)

so the capacitance is,

C =
4πε r1r2

r2 − r1
. (3)

Applying these results to the case of two shells, r1 < r < r2 and r2 < r < r3, with
permittivities and resistivities ε1, ρ1 and ε2, ρ2, respectively, we have,

R1 =
ρ1(r2 − r1)

4πr1r2
, R2 =

ρ2(r3 − r2)

4πr2r3
, C1 =

4πε1 r1r2

r2 − r1
, C2 =

4πε2 r2r3

r3 − r2
. (4)

2.2 One Leaky Capacitor

We first consider the case of a single shell, with resistance R and capacitance C , in series
with an “external” resistor R0 and a battery of voltage V .

At large times the current I is steady, with the value,

I∞ =
V

R0 + R
, (5)

while at t = 0, when the battery is first connected, the current is,

I0 =
V

R0
, (6)

2



since the capacitor appear as a short initially.
Within the shell, the current can be thought of as splitting into two parts that flow (in

parallel) through the resistor and capacitor,

I(t) = IR(t) + IC(t), (7)

where IR(0) = 0, IR(∞) = V0/(R0 + R), IC(0) = V0/R0 and IC(∞) = 0.
The voltage across the shell is given by IRR = QC/C, whose time derivative is İR =

IC/RC . Then, IC(t) = İR(t)RC , and the total current (7) can be written as,

I = IR + İRRC. (8)

Kirchhoff’s law for the loop that includes the resistance R is now,

V0 = IR0 + IRR1 = İRR0RC + IR(R0 + R), (9)

which implies that the current in resistor R is,

IR(t) =
V0

R0 + R

(
1 − e−(R0+R)t/R0RC

)
. (10)

Hence, the current in the capacitor is,

IC(t) = RCİR =
V0

R0
e−(R0+R)t/R0RC , (11)

and the total current is,

I(t) =
V0

R0 + R

(
1 − e−(R0+R)t/R0RC

)
+

V0

R0
e−(R0+R)t/R0RC =

V0

R0 + R

(
1 +

R

R0
e−(R0+R)t/R0RC

)
.

(12)

2.3 Two Leaky Capacitors

In the original problem with two shells, each with resistance Ri and capacitance Ci, i = 1, 2,
the steady current at long times is,

I(∞) =
V0

R0 + R1 + R2
. (13)

The conseptual splitting of the current into parallel paths within each shell can now be
written as,

I = IR1 + IC1 = IR2 + IC2. (14)

Extrapolating the form (10) to the case of two shells, we anticipate the presence of two time
constants τ i,

IRi =
V0

R0 + R1 + R2

(
1 − αie

−t/τα − βie
−t/τβ

)
, (15)

where,
αi + βi = 1, (16)
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so that IRi(∞) = I(∞) = V0/(R0 + R1 + R2). Both exponentials e−t/τα and e−t/τβ appear
in both currents IRi so that eq. (14) can hold at all times.

The currents in the capacitors are,

ICi = RiCiİRi =
V0RiCi

R0 + R1 + R2

(
αi

τα
e−t/τα +

βi

τβ
e−t/τβ

)
. (17)

The initial condition on the currents in the capacitors are that ICi(0) = V0/R0, so we obtain
two constraints,

αi

τα
+

βi

τβ
=

R0 + R1 + R2

R0RiCi
≡ 1

Ti
, (18)

where,

Ti =
R0

R0 + R1 + R2
τ i, and τ i = RiCi. (19)

We can express the αi and βi in terms of τα and τβ using eq. (16) in (18),

αi =
τα

τβ − τα

τβ − Ti

Ti

, and βi =
τβ

τα − τβ

τα − Ti

Ti

. (20)

Two more constraints are needed to deduce τα and τβ . One of these can be obtained by
using eqs. (15) and (17) in (14),

α1

(
τ 1

τα
− 1

)
e−t/τα +β1

(
τ1

τβ
− 1

)
e−t/τβ = α2

(
τ 2

τα
− 1

)
e−t/τα +β2

(
τ 2

τβ
− 1

)
e−t/τβ . (21)

For this to hold at all times, we must have,

α1 (τ1 − τα) = α2 (τ 2 − τα) and β1 (τ 1 − τβ) = β2 (τ 2 − τβ) . (22)

Using this in eq. (20) we find,

T2(τ 1 − τα)(τβ − T1) = T1(τ 2 − τα)(τβ − T2), (23)

and,
T2(τ 1 − τβ)(τα − T1) = T1(τ 2 − τβ)(τα − T2). (24)

From either eq. (23) or (24) we have,

τβ =
T1T2(τ1 − τ 2)

τ 1T2 − τ 2T1 + τα(T1 − T2)
=

T1T2(τ 1 − τ 2)

τα(T1 − T2)
=

R0τ 1τ 2

τα(R0 + R1 + R2)
, (25)

recalling eq. (19).
The final constraint can be obtained from Kirchhoff’s law for the loop containing resistors

R0, R1 and R2,

V0 = IR0 + IR1R1 + IR2R2

= IR1(R0 + R1) + IC1R0 + IR2R2

= V0 +
V0 e−t/τα

(R0 + R1 + R2)τα
[α1(R0R1C1 − (R0 + R1)τα) − α2R2τα]

+
V0 e−t/τβ

(R0 + R1 + R2)τβ
[β1(R0R1C1 − (R0 + R1)τβ) − β2R2τβ]. (26)
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For this to be true at all times, each of the quantities in brackets must vanish. Using, for
example, the second bracket together with eqs. (20) and (25) we find (after dividing out the
common factor R0R1C1) a quadratic equation for τα,

τ 2
α −Aτα + B = 0, (27)

where,

A =
(R0 + R2)R1C1 + (R0 + R1)R2C2

R0 + R1 + R2
=

R0(τ1 + τ 2) + R1τ 2 + R2τ 1

R0 + R1 + R2
, (28)

and,

B =
R0R1C1R2C2

R0 + R1 + R2
=

R0τ1τ 2

R0 + R1 + R2
. (29)

The quadratic equation (27) has two positive roots,

τα =
A +

√
A2 − 4B

2
, and τβ =

A −√
A2 − 4B

2
=

B

τα
, (30)

recalling eq. (25). As a check, note that if R2 = C2 = 0 then B = 0 and τα = A =
R0R1C1/(R0 + R1), as found in eq. (11).

We note that τατβ = B, so that eq. (19) can be rewritten as Ti = B/τ 3−i, and eq. (20)
becomes,

αi =
τα − τ 3−i

τα − τβ
, and βi = −τβ − τ3−i

τα − τβ
. (31)

Finally, the voltage of electrode 2 follows from eq. (15) as,

V2 = IR2R2 =
V0R2

R0 + R1 + R2

(
1 − τα − τ 1

τα − τβ
e−t/τα +

τβ − τ 1

τα − τβ
e−t/τβ

)
. (32)

A special case is that R1 = R2 = R/2 and C1 = C2 = 2C , which reduces to the example
(sec. 2.1) of a single shell of resistance R and capacitance C . There are still two time
constants from eqs. (25) and (30), τα = RC and τβ = R0RC/(R0 + R), of which τβ is the
one that appears in eq. (11). Then, according to eq. (20), αi = 0 and βi = 1, so the time
constant τα does not appear in the current.

Another special case is that τ 1 = R1C1 = R2C2 = τ 2 ≡ τ . Then, eq. (20) tells us that
α1 = α2 and β1 = β2, and eq. (26) indicates that τα = τβ = τR0/(R0 + R1 + R2). The
current I has the form (12) where R = R1 + R2.

2.4 Oscilloscope and Probe

As shown in the lower figure on p. 1, an oscilloscope with a capacitive probe is an application
of a pair of “leaky capacitors”.
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Here, we are particularly concerned with the response voltage, V2(ω), at the oscilloscope
input to a sinusoidal load voltage V0e

iωt. Noting that the impedance Z‖ of a resistor R in
parallel with a capacitor C is,

Z‖ =
R

1 + iωτ
, (33)

where τ = RC , we have,

V2(ω) = IZ2 = V0
Z2

Z
= V0

Z2

R0 + Z1 + Z2
= V0

R2

R0(1 + iωτ 2) + R1
1+iωτ2

1+iωτ1
+ R2

. (34)

In practice, the resistances R1 and R2 should be large compared to R0, in which case the
probe acts as a frequency-independent voltage divider,

V2 ≈ V0
R2

R1 + R2
, (35)

provided R1C1 = τ 1 = τ2 = R2C2.

2.5 Solution via Laplace Transforms

The frequency response (34) can be used to deduce the transient response to a constant
voltage V0 that is turned on at t = 0 via the techniques of Laplace transforms.

2.5.1 Definition of the Laplace Transform

Recall that in general a function f(t) can be represented as a Fourier integral,

f(t) =

∫ ∞

−∞
fωeiωt dω, (36)

where the Fourier amplitude fω is given by,

fω =
1

2π

∫ ∞

−∞
f(t)e−iωt dt. (37)

For the special case that f(t) = 0 for t < 0, the Fourier amplitude is,

fω =
1

2π

∫ ∞

0

f(t)e−iωt dt. (38)

We can define s = iω, and introduce the Laplace transform F (s) of the function f(t) as,

F (s) = 2πfω =

∫ ∞

0

f(t)e−st dt, (39)

in which case the Fourier integral (36) can be rewritten as,1

f(t) =
1

2π

∫ ∞

−∞
F (s)eiωt dω =

1

2πi

∫ i∞

−i∞
F (s)est ds, (40)

which relation is called the inverse Laplace transform.

1Strictly, the integration is along a contour in the complex s plane that includes a line along some value
of Re(s) such that all poles of F (s) lie within the contour when it is closed to the left via an infinite half
circle.
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2.5.2 Analysis of Impulse Response

We now use the method of Laplace transforms for the example of oscilloscope and probe to
determine the response waveform V2(t) from the driving waveform V0(t). A first approach
follows the spirit of Green by supposing V0(t) is the Dirac delta function δ(t), i.e., a brief
impulse of voltage.

From eq. (38) we see that all Fourier components of δ(t) are the same, namely 1/2π since∫
δ(t)f(t) dt = f(0). From eq. (39) the Laplace transform of the delta function is 1. Hence,

dividing eq. (34) by 2πV0 gives the Fourier component of the response voltage V2,impulse

caused by the impulse δ(t). Then, eq. (39) tells us that V2(ω) is the Laplace transform of
the response function, so we rewrite eq. (34) using s = iω as,

F2,impulse(s) = V2(ω) = V0
R2(1 + sτ 1)

R0(1 + sτ1)(1 + sτ 2) + R1(1 + sτ 2) + R2(1 + sτ 1)

=
V0R2

R0τ 2

s + 1/τ 1

(s − σα)(s − σβ)
, (41)

where σα and σβ are the roots of the quadratic equation,

s2 +
R0(τ 1 + τ 2) + R1τ 1 + R2τ 1

R0τ 1τ 2
s +

R0 + R1 + R2

R0τ 1τ 2
= s2 +

A

B
s +

1

B
= 0, (42)

where the constants A and B were introduced in eqs. (28)-(29). That is,

σα = −A −√
A2 − 4B

2B
= − 1

τα
, and σβ = −A +

√
A2 − 4B

2B
= − 1

τβ
, (43)

recalling eq. (30).
To find V3,impulse(t), we note that the inverse Laplace transform of the form,

F (s) =
s + c

(s + a)(s + b)
(44)

is,

f(t) =
(c − a)e−at − (c − b)e−bt

b− a
. (45)

Using this with eqs. (41) and (43), we obtain the form of the impulse response,

V2,impulse(t) =
R2

R0τ2

(1/τ 1 − 1/τ α)e−t/τα − (1/τ 1 − 1/τ β)e−t/τβ

1/τβ − 1/τα

=
R2

R0τ1τ 2

τβ(τα − τ 1)e
−t/τα − τα(τβ − τ 1)e

−t/τβ

τα − τβ
. (46)

The response V2(t) to any drive voltage V0(t) can be deduced from the impulse response,

V2(t) =

∫ t

−∞
V0(t

′)V2,impulse(t − t′) dt′. (47)
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In particular, the response V2,step(t) to a step in voltage from 0 at t, 0 to V0 for t > 0 is,

V2,step(t) = V0

∫ t

0

V2,impulse(t − t′) dt′ = V0

∫ t

0

V2,impulse(t
′′) dt′′

=
V0R2

R0τ 1τ 2

[
τβ(τα − τ 1)

τα − τβ

∫ t

0

e−t′′/τα dt′′ − τα(τβ − τ 1)

τα − τβ

∫ t

0

e−t′′/τβ dt′′
]

=
V0R2τατβ

R0τ 1τ 2(τα − τβ)

[
(τα − τ 1)(1 − e−t/τα) − (τβ − τ 1)(1 − e−t/τβ)

]

=
V0R2

R0 + R1 + R2

(
1 − τα − τ 1

τα − τβ
e−t/τα +

τβ − τ1

τα − τβ
e−t/τβ

)
, (48)

as found previously in eq. (32).
Equation (47) can be re-expressed in the language of Laplace transforms on noting that

there is no response prior to the drive impulse, so V2,impulse(t) = 0 for t < 0. Hence, we can
extend the limit of integration in eq. (47) from t to ∞,

V2(t) =

∫ ∞

−∞
V0(t

′)V2,impulse(t − t′) dt′. (49)

The Laplace transform F2(s) of eq. (49) is (assuming that V0(t) = 0 for t < 0),

F2(s) =

∫ ∞

0

e−st dt

∫ ∞

−∞
V0(t

′)V2,impulse(t − t′) dt′

=

∫ ∞

−∞
V0(t

′)e−st′ dt′
∫ ∞

−∞
V2,impulse(t − t′)e−s(t−t′) dt

=

∫ ∞

0

V0(t
′)e−st′ dt′

∫ ∞

0

V2,impulse(t
′′)e−st′′ dt′′

= F0(s) · F2,impulse(s). (50)

Thus, the Laplace transform F2,impulse(s) of the response V2,impulse(t) to a drive impulse at
t = 0 equals the Laplace transform F2(s) of the response V2(t) to any drive waveform V0(t)
(provided V0(t) = 0 for t < 0) divided by the Laplace transform F0(s) of that drive waveform,

F2(s)

F0(s)
= F2,impulse(s) ≡ transfer function. (51)

The ratio of the Laplace transform of the response function to the Laplace transform
of the drive function is called the transfer function. Thus, eq. (41) describes the transfer
function for the present example.

2.5.3 Step Response via the Impulse Response Transform

The response to a step driving term can also be found by a slightly different procedure. We
note that the delta function δ(t) is the time derivative of the Heaviside step function,

δ(t) =
dθ

dt
, where θ(t) =

⎧⎨
⎩

0 (t < 0),

1 (t > 0).
(52)
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We also see from eq. (39) that the Laplace transform of the time derivative df/dt is s times
the Laplace transform of function f(t),

∫ ∞

0

df

dt
e−st dt = fe−st

∣∣∣∞
0

+ s

∫ ∞

0

fe−st dt = sF (s). (53)

Hence, the Laplace transform of the step response is equal to the Laplace transform of the
impulse response divided by s. Recalling the discussion at the end of sec. 2.5.2, this relation
can also be stated as: the Laplace transform of the step response is equal to the transfer
function divided by s.

On dividing the transfer function (41) by s, the Laplace transform of the response V2,step

to a step in voltage V0 is
V0R2

R0τ 2

s + 1/τ 1

s(s + 1/τ α)(s + 1/τβ)
. (54)

The inverse of the Laplace transform,

s + c

s(s + a)(s + b)
(55)

is,2

f(t) =
c

ab

(
1 − b(c − a)

a − b
e−at +

a(c − b)

a − b
e−bt

)
. (56)

The particular form (54) then leads immediately to the step response (32) and (48).

2See, for example, D. Christiansen, R. Jurgen and D. Fink, Electronics Engineers’ Handbook, 4th ed.
(McGraw-Hill, 1996).
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