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1 Problem

It was claimed in Prob. 6.6 of [1] that a bicycle speeds up when it is leaned (without pedaling
or steering). Can this be so?

2 Solution

The answer is YES, but a näıve application of Newtonian mechanics suggests that the answer
is NO.

For the velocity of the bicycle to increase during leaning of the bicycle to, say, the left,
it näıvely seems that there must be a force on it in the direction of the forward velocity.

As the disk leans away from the vertical, a frictional force F arises at the point of contact
of the disk with the ground, as sketched below supposing the the component F‖ is in the
direction of forward motion of the center of mass of the disk.

In this case, the associated torque r×F‖ about the center of mass of the disk (of radius
r) would point to the right (with respect to the forward direction), implying that the angular
velocity ω of the disk about its center (and hence also the forward velocity, r ω, of the center
of the disk) would be decreasing, rather than increasing. This contradiction suggests that
the forward velocity of the disk cannot increase during the leaning.

However, the above argument is too näıve.
An early, detailed analysis of rolling without slipping of a thin disc on a horizontal surface

was given by Routh in Art. 244 of [2], and was discussed by the present author in [3].
A subtle consequence of the condition of rolling without slipping was noted on p. 4 of [3].

Namely, if the disk is falling/leaning to the left (θ increasing in the figure above) while the
trajectory of the disk curves to the left, then the acceleration of the center of mass along the
forward direction can be negative. In this case, the friction force F‖ points backwards (with
also a component F⊥ to the left to push the disk into a left turn), and the torque r × F‖
increases the angular velocity ω of the disk about its axis, as required for an increasing
forward velocity, r ω, of the center of the disk.1

1See also footnote 3, p. 6 of [3]. Note that the present θ, r and ω are π/2 − α, a and ω1 in [3].
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The increase in both the translational and rotational kinetic energy of the disk as it leans
comes from the liberation of gravitational potential energy as the center of mass of the disk
“falls down”.

A Appendix: Comments on Angular Momentum

A.1 The System of Bicycle + Earth

If we consider the isolated system of the bicycle plus the Earth, the total angular momentum
of this system is constant. Then, pedaling of the bicycle, initially at rest with respect to
the Earth, gives it nonzero angular momentum, which must be compensated by an equal
and opposite change in the angular momentum of the Earth. The latter effect is very small
compared to the total angular momentum of the Earth, and is reasonably neglected in all
discussions of the motion of bicycles.

A.2 Analysis of the Change in Angular Momentum of the Bicycle

We first give an analysis that emphasizes the angular momenta of the two wheels of the
bicycle, and then we consider the bicycle as a whole. In both of these analyses, the bicycle
does not lean, and moves along a straight line.

A.2.1 Analysis of the Angular Momenta of the Two Wheels

We use a highly simplified model of the bicycle, in which the only mass is in the two wheels,
each of mass m, radius R, and moments of inertia mR2 about their centers. The centers of
the wheels are distance 2d apart, and in this approximation the center of mass of the bicycle
is at the midpoint of the line of centers of the two wheels, as sketched below.

We find that when the bicycle is accelerating forward (while the moving in a straight line
without leaning), the friction force on the front wheel is backwards, while the friction force
on the real/drive wheel is forwards, and three large larger that the friction force on the front
wheel.

The velocity v and acceleration a of the bicycle are both to the left in the figure. The
angular velocity ω and the angular acceleration α of both wheels are counterclockwise. The
condition that the wheels roll without slipping is that,

ω =
v

R
, α =

a

R
. (1)
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The contact forces of the two wheels with the ground have horizontal components Fi,
and vertical components Ni for i = 1, 2, with directions as sketched in the figure, which
anticipates that F1 points to the right while F2 points to the left.

We suppose the (massless) drive gear wheel of the bicycle, of radius r < R, is centered
on the center of mass. It is connected by a (massless) chain to a (massless) gear wheel, also
of radius r on the rear wheel, 2, of the bicycle.

The force in the horizontal strut between the center of mass and the center of wheel 1(2)
is F3(4), and the tension in the upper segment of the chain between the drive gear wheel and
the gear wheel on wheel 2 is F5.

The force balance at the (massless) drive gear wheel is that,

F3 − F4 + F5 = 0. (2)

We suppress the details of the mechanism (involving a person) of the drive gear wheel.
The wheels move horizontally, and the normal forces Ni do not enter into the analysis of

the motion of the two wheels of the bicycle.
For wheel 1, F = ma is simply,

F3 − F1 = ma, (3)

and the torque equation about the center of mass of wheel 1 is,

τ 1 = RF1 = I1α = mR2 a

R
= mRa, (4)

and hence, recalling eq. (2),

F1 = ma, F3 = 2ma = F5 − F4. (5)

For wheel 2, F = ma tells us that,

F2 − F4 + F5 = ma, (6)

and the torque equation about the center of mass of wheel 2 is,

τ 2 = rF5 − RF2 = I2α = mR2 a

R
= mRa, (7)

and hence, recalling eq. (5),

F2 = ma + F5 − F4 = 3ma, F5 = 4ma
R

r
, F4 = F2 + F5 −ma = 2ma

(
1 +

2R

r

)
. (8)

This confirms that F1 points to the right while F2 = 3F1 points to the right.
That is, the drive mechanism causes the rear wheel to rotate counterclockwise, leading

to the reaction force F2 that points to the left. The only torque on the front wheel is due to
the frictional force F1, which must point to the right for the angular velocity of this wheel
to increase as the bicycle accelerates to the left.
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A.2.2 Analysis of the Bicycle as a Whole

Considering the bicycle as a whole, the only relevant (external) forces are F1, F2, N1, N2

and the downward force of gravity, 2mg.
The horizontal force equation is,

2ma = F2 − F1, (9)

which is consistent with eqs. (5) and (8).
The vertical equation of motion is simply that,

N1 + N2 = 2mg. (10)

The torque equation about the center of mass of the system is,

τ cm =
dLcm

dt
= 2Iα = 2mR2 a

R
= 2mRa = (F1 − F2)R + (N2 − N1)d, (11)

N2 − N1 =
1

d
[2mRa + (F2 − F1)R] =

4mRa

d
, (12)

N1 = mg − 2maR

d
, N2 = mg +

2maR

d
. (13)

The normal force on the front wheel is less than that on the front, as familiar with rapidly
accelerating cars, for which the front end tends to rise.2 See, for example, sec. 2.2 of [4].

This problem was suggested by Ralph Wang. Thanks to Jason Moore for e-discussions
of this issue.
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2Conversely, for rapidly decelerating cars (and bicycles) the rear end tends to rise.
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