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1 Problem

A science toy [1, 2] marketed under the name LevitronTM [3] consists of a bar magnet
of mass m and magnetic dipole moment μ that is levitated above a static magnetic field
which is circularly symmetric about the vertical (z) axis (such as that of a loop of current
perpendicular to the z-axis). The magnet is also spinning with angular velocity ω about its
symmetry axis, which axis is parallel to μ.

Deduce conditions on the derivatives of the magnetic field such that the center of mass
motion of the magnet is stable. You may assume that ω is large enough that the rotational
motion is stable, and that the equilibrium point lies on the symmetry axis of the magnetic
field.

For the example of a magnet levitated antiparallel to the field of a loop of radius a that
carries a steady current, find the range of equilibrium heights z0 above the plane of the loop
for which the motion is stable.

2 Solution

The complex history of the invention, development and marketing of the LevitronTM toy
can be viewed at [4]. The commercial toy uses a permanent magnet base, rather than an
electromagnet as analyzed here. The case of a permanent-magnet base has been extensively
discussed by Berry [5], who derived the magnetic field from a scalar potential, which tech-
nique is more compact for fields produced by a permanent magnet than that presented below.
If the magnetic field is due to a uniformly magnetized disk of radius a, then the stability
region obeys,

a

2
< z0 <

a√
2.5

, (1)

as also found in eq. (33) for a loop coil. For a square permanent magnet with a hole in its
center, as used in the commercial LevitronTM, the region of stability is even smaller.

See also [6]-[9].

2.1 Conditions for Stability

To discuss the center of mass motion, we construct a potential and require that the second
spatial derivatives be positive when the first derivatives vanish.

The gravitational potential energy is just mgz, taking the z-axis as vertically upwards.
The potential energy of a magnetic dipole μ in a magnetic field B is −μ · B; the moment
tends to align itself parallel to the magnetic field. Hence,

U(r, z) = mgz −μ · B(r, z). (2)
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For a simple circularly symmetric field, B(r, z), the equilibrium points will be on the
z-axis of symmetry. (We ignore more complex fields that might lead to a ring of equilibrium
points.) Then, the condition that (0, z0) be an equilibrium point is,

Fz = −∂U(0, z0)

∂z
= 0 = −mg + μ · ∂B(0, z0)

∂z
, (3)

Fr = −∂U(0, z0)

∂r
= 0 = μ · ∂B(0, z0)

∂r
. (4)

The conditions that this equilibrium be stable are,

∂2U(0, z0)

∂z2
= −μ · ∂2B(0, z0)

∂z2
> 0, (5)

∂2U(0, z0)

∂r2
= −μ · ∂2B(0, z0)

∂r2
> 0. (6)

Prior to more detailed analysis, we can learn several things from eqs. (3)-(6). Recalling
(or rederiving, as is done below) that a cylindrically symmetric magnetic field has a radial
component Br that grows linearly with radius near the axis, while its axial component Bz

drops off quadratically with radius, eq. (4) tells us that the magnetic dipole moment must
be either parallel or antiparallel to the (axial) magnetic field at the equilibrium point. We
desire the equilibrium point to be above the source of the magnetic field, so the device can
operate on a tabletop. The magnitude of the magnetic field will decrease with increasing
height, so if the axial magnetic field is positive, then ∂Bz(0, z0)/∂z will be negative, and
eq. (3) tells us that the magnetic dipole must be antiparallel to field to obtain an upward
force to balance that of gravity. Likewise, if Bz < 0, then ∂Bz(0, z0)/∂z > 0, and again the
magnetic moment must be antiparallel to the field.

Since magnetic dipoles prefer to be parallel to an applied magnetic field, there must be
some mechanism to insure that if the dipole is initially antiparallel it will remain so. Spinning
the dipole rapidly about its axis has this effect.

Assuming that the spin keeps the dipole antiparallel to the local magnetic field vector
(and not simply antiparallel to the symmetry axis), we can rewrite the stability conditions
(5)-(6) as,

∂2B(0, z0)

∂z2
=

∂2Bz(0, z0)

∂z2
> 0 (7)

∂2B(0, z0)

∂r2
=

∂2Bz(0, z0)

∂r2
+

1

B0

(
∂Br(0, z0)

∂r

)2

> 0, (8)

using B =
√

B2
r + B2

z , and defining B0 = Bz(0, z0). In arriving at (6), we note that since
Br(0, z) = 0, then ∂Br(0, z)/∂z = 0 also.

The presence of the second term in eq. (8) is crucial for stability, since ∂2Bz(0, z0)/∂r2 =
−(∂2Bz(0, z0)/∂z2)/2 for axially symmetric magentic fields (see eq. (23). Hence, a key aspect
of stability is that when the dipole moves off the symmetry axis, its magnetic moment aligns
itself with the local magnetic field. The spin of the dipole enforces this condition, but only
for a range of spin angular velocities. If the spin is too little, the nutations of the spin will
provide insufficient alignment of the dipole with the field [5], and if the spin is too large the
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precession frequency (12) will be less than the oscillation frequency, and the dipole cannot
stay aligned with the local magnetic field [6].

The axial field due to a bounded source of magnetic field will have, in general, a profile
something like a bell-curve. Near the source, the second derivative of the axial field will
be negative, but at greater distances it becomes positive. So, condition (6) will lead to a
minimum height for stability.

The stability condition (8) is the subtlest. The transverse profile of the axial component
of the field will also have a shape like a bell-curve, so the first term of eq. (8) is negative.
Without the second, positive term, stability would not be possible. That term arises only
if the dipole tips so as to remain aligned with the field as it moves off the symmetry axis,
as required by the physics of a spinning dipole. Even so, it is not evident that the second
term is larger than the first. Indeed, in the more detailed argument below we will find that
condition (8) is satisfied only close to the source, but that there is a small range of z0 for
which both conditions (7) and (8) are satisfied.

2.2 Spin Precession

The motion of the spinning dipole about its center of mass is described by the torque equa-
tion,

dL

dt
= μ × B, (9)

where L is the angular momentum. In the limit of large spin angular velocity ω, we may
approximate,

L = Iω = Iω
μ

μ
, (10)

where I is the moment of inertia about the symmetry axis (which is parallel to μ). Then,
we can rewrite the torque equation as,

dμ

dt
= −μB

Iω
× μ. (11)

Hence, we see that the motion of the magnet relative to its center of mass consists of pre-
cession about the local direction of the magnetic field at angular velocity,

Ω = −μB

Iω
. (12)

In particular, we see that,
μ · B = const = μB cos θ0, (13)

where θ0 is the (constant) angle between μ and B. We have seen that condition (4) requires
that cos θ0 = −1.

2.3 Evaluation of the Field Derivatives

To complete the problem, we express the magnitude of the field B in terms of only its z-
component, Bz(0, z). The approach is to use Maxwell’s equations, ∇ ·B = 0 and ∇×B = 0,
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to relate Br to Bz. From the above, we see that we will use only the first and second
derivatives of B, so it suffices to use a series expansion to second order in r and z. Say,

Bz(r, z) = B0 + B1(z − z0) + B2(z − z0)
2 + B3r + B4r

2 + B5r(z − z0), (14)

and,
Br(r, z) = C0 + C1(z − z0) + C2(z − z0)

2 + C3r + C4r
2 + C5r(z − z0). (15)

In cylindrical coordinates we have,

∇ ·B =
1

r

∂rBr

∂r
+

∂Bz

∂z
= 0, (16)

and,

(∇ × B)φ =
∂Br

∂z
− ∂Bz

∂r
= 0. (17)

From eq. (16),[
C0 + C1(z − z0) + C2(z − z0)

2
]
/r + 2C3 + 3C4r + 2C5(z − z0)

+B1 + 2B2(z − z0) + B5r = 0, (18)

and so,

C0 = C1 = C2 = 0, C3 = −B1

2
, C4 = −B5

3
, C5 = −B2. (19)

That is,

Br(r, z) = −B1r

2
− B5r

2

3
− B2r(z − z0). (20)

Then, from eq. (17),
− B2r − B3 − 2B4r − B5(z − z0) = 0, (21)

and hence,

B3 = B5 = 0, B4 = −B2

2
. (22)

Altogether,

Bz(r, z) = B0 + B1(z − z0) + B2(z − z0)
2 − B2r

2

2
, (23)

and,

Br(r, z) = −B1r

2
−B2r(z − z0), (24)

accurate to second order in r and z.
With cos θ0 = −1, the equilibrium condition (3) is now,

− mg

μ
=

∂B(0, z0)

∂z
=

∂Bz(0, z0)

∂z
= B1. (25)

The conditions (7)-(8) on the second derivatives of the potential now lead to,

∂2Bz(0, z0)

∂z2
= 2B2 > 0, (26)

and,
∂2Bz(0, z0)

∂r2
+

1

B0

(
∂Br(0, z0)

∂r

)2

= −B2 +
B2

1

4B0
> 0. (27)
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2.4 Example of a Current Loop

If may be of interest to consider the example of a loop of current. Let a be the radius of
the loop and A be the maximum magnetic field, which occurs at (0,0). The field along the
z-axis is readily found to be,

Bz(0, z) =
Aa3

(a2 + z2)3/2
. (28)

Then,
∂Bz

∂z
= − 3Aa3z

(a2 + z2)5/2
, (29)

so the equilibrium position z0 is related by,

B0 =
Aa3

(a2 + z2
0)

3/2
, (30)

and,

B1 =
∂Bz(0, z0)

∂z
= − 3Aa3z0

(a2 + z2
0)

5/2
= −mg

μ
. (31)

Further,

B2 =
1

2

∂2Bz(0, z0)

∂z2
=

3Aa3(4z2
0 − a2)

2(a2 + z2
0)

7/2
=

3B0(4z
2
0 − a2)

2(a2 + z2
0)

2
. (32)

The requirement (26) for stable equilibrium that B2 > 0 is satisfied so long as z0 > a/2.
The second requirement (27) for stability, B2

1/4B0 > B2, is satisfied when z0 < a/
√

2.5.
Together we must have,

a

2
< z0 <

a√
2.5

, (33)

which holds for suitable choices of m, μ, a and A.

3 Comments (Jan. 13, 2024)

By a kind of application of the principle of relativity, we might expect that there could exist
magnetic levitation in which the levitated magnetic dipole is “at rest”, while the magnetic
field “rotates”. A version of this possibility was discussed in [10], but it was not very practical.
A successful variant was reported in [11, 12], and further discussed in [13], in which a small
dipole magnet rotates in an external, high-frequency rotating magnetic field, with the dipole
axis nearly aligned with the axis of rotation of the external field. See
https://x.com/Sudanamaru1

https://www.youtube.com/watch?v=o1eVSmnGJNc&list=PLOfbFSFa_WoK4PgYQXhuNucS_WcIxXDET&index=1

A hint of this possibility follows from noting that the force on magnetic dipole m1 due to
dipole m2 is 3(r̂ ·m1)m2/r

4 in Gaussian units, with −m1 ‖ r̂ ⊥ m2 and r = r1 − r2 [14, 15],
which is antiparallel to m2. Then, if dipole m2 rotates fast enough about r̂, dipole 1 will
move (in a quasistatic approximation) in a small circle perpendicular to r̂. Apparently, eddy
currents play some role in this phenomenon, such that a detailed analysis is complex.
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