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1 Problem

Discuss the electromagnetic and mechanical momentum in a DC current loop of resistance
R that is powered by a battery of voltage V . The loop is at rest in the laboratory.

September 15, 2018. The discussion of “hidden” momentum in this note overlooks the
important subtlety that in the rest frame of the loop plus battery, the flow of energy from
the battery to the resistor results in a motion of the center of mass/energy in the direction
from the battery to the resistor. That is, a (small!) external force would be required to hold
the loop at rest in the lab frame, which frame is NOT the center-of-mass/energy frame as
tacitly assumed below.

A better analysis in an example of this type is given in [1], whose updated version largely
supersedes this note.

Of possible remaining interest is the computation of the electromagnetic field momentum,
Sec. 2.1 below, including Sec. 2.1.4 on the intriguing notion of an energy-flow velocity.

2 Solution

This problem was inspired by an extensive e-dialogue with Vladimir Hnizdo.

Because the loop is at rest in the laboratory, its total momentum should be zero. Septem-
ber 15, 2018. This statement incorrectly assumes that there would be no net force on the
loop if it were at rest in the lab frame.

However, a DC current loop is a dynamical system in that its electrical resistance R
causes dissipation of power at the rate V 2/R = V I = I2R, where the DC current I is, of
course, I = V/R. This power flows from the battery to the loop in a manner first well
described by Poynting. As shown in the figure above by Poynting [2], the power does not
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flow down the wire of the loop, but rather it flows through the air/vacuum and enters the
wire at right angles to its surface.1

Abraham noted that Poynting’s vector, when divided by c2, where c is the speed of light,
represents the volume density of electromagnetic momentum [4].2 The total electromagnetic
momentum associated with the circuit is then given in terms of the electric field E and the
magnetic field B (in Gaussian units) by,

PEM =

∫
E× B

4πc
dVol. (1)

The above figure suggests that the DC circuit has a nonzero electromagnetic momentum
that points to the right.

Then, for the circuit to have zero total momentum, it must also possess a “hidden”
mechanical momentum that points to the left.3

In Sec. 2.1 we deduce the electromagnetic momentum of the circuit from various points
of view, and in Sec. 2.2 we discuss the “hidden” mechanical momentum.

2.1 Electromagnetic Momentum

A direct evaluation of the electromagnetic momentum of the circuit according to eq. (1)
is cumbersome, so we begin with an indirect calculation in Sec. 2.1.1. A lengthier, direct
calculation is presented in Sec. 2.1.2. An alternative calculation based on the concept of
canonical electromagnetic momentum is given in Sec. 2.1.3.

2.1.1 Indirect Calculation of the Electromagnetic Momentum

It is convenient to express the electromagnetic momentum (1) in terms of an integral of
the electric potential Φ and the current density J, following Furry [10].4 See also [12]. For
this we note that in a static situation the electric and magnetic fields obey E = −∇Φ and
∇×B = (4π/c)J. Then, for (quasi)static examples where B varies as 1/r3 at large distances
from the source currents,

PEM =

∫
E ×B

4πc
dVol = −

∫ ∇Φ × B

4πc
dVol =

∫
Φ∇ × B

4πc
dVol −

∫ ∇ × ΦB

4πc
dVol

=

∫
ΦJ

c2
dVol −

∮
dArea× ΦB

4πc

=

∫
ΦJ

c2
dVol, (2)

whenever the charges and currents are contained within a finite volume.

1As Sommerfeld said, p. 130 of [3]: Conductors are nonconductors of energy. Electromagnetic energy is
transported without loss only in nonconductors.

2This was noted earlier, if less crisply, by Thomson [5, 6, 7], and also by Poincaré [8].
3For a general definition of “hidden” momentum, see [9].
4Additional expressions for electromagnetic momentum in static examples are discussed in [11].
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In the present problem we suppose the circuit forms a circle of radius a in the x-y plane,
centered on the origin. The battery of voltage V is located at (x, y, z) = (−a, 0, 0) and is
oriented so that the current vector at position (a, φ, 0) in a cylindrical coordinate system is,

I = −V

R
φ̂ =

V

R
(x̂ sinφ − ŷ cos φ). (3)

We suppose that the resistance R is uniformly distributed over the circumference of the
circuit, so that the electric potential along the circuit is,

Φ(a, φ, 0) =
V φ

2π
(−π < φ < π). (4)

The electric potential varies from −V/2 to V/2 within the battery, so the potential is actually
continuous in the vicinity of φ = ±π. If we suppose that the battery extends of the small
region |π − φ| < ε, then the (azimuthal) electric field inside the battery and resistor can be
expressed as,

Eφ(a, φ, 0) =

⎧⎨
⎩ − V

2(π−ε)a
(|φ| < π − ε),

V
2εa

(|π − φ| < ε).
(5)

Using eqs. (3) and (4) in (2), and expressing J dVol as aI dφ, we find the electromagnetic
momentum of the circuit to be,

PEM =
aV 2

2πc2R

∫ π

−π

dφ (x̂ sinφ − ŷ cosφ) =
aV 2

c2R
x̂ =

aV I

c2
x̂ =

aI2R

c2
x̂, (6)

which points to the right as anticipated above.

2.1.2 Direct Calculation of the Electromagnetic Momentum

A direct evaluation of the electromagnetic momentum (1) is difficult; calculation of the
magnetic field of a current loop leads to elliptic integrals. However, analytic calculations
become tractable in a two-dimensional approximation of a current loop by a current cylinder
[13].

We now suppose that R is the resistance of a unit length along the cylinder,5 so that
I = V/R is the current per unit length that flows around its circumference due to the battery
of voltage V that lies along the line φ = −π. The magnetic field B is that of an infinite
solenoid,

B =

⎧⎨
⎩ −4πI

c
ẑ = −4πV

cR
ẑ (r < a),

0 (r > a).
(7)

The electric field E can be deduced from a calculation of the potential Φ(r, φ, z). This
potential now has the value V φ/2π for all z on the cylinder r = a. As this is an odd function

5The dimensions of R are resistance × length = length/velocity in Gaussian units.
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of the angle φ, the potential can be represented by the expansion,

Φ(r, φ, z) =

⎧⎨
⎩
∑∞

n=1 An

(
r
a

)n
sinnφ (r < a),∑∞

n=1 An

(
a
r

)n
sinnφ (r > a).

(8)

The Fourier coefficients An are given by,

An =
1

π

∫ π

−π

V φ

2π
sin nφ dφ = −(−1)n V

nπ
. (9)

The radial component of the electric field is,

Er = −∂Φ

∂r
=

V

πa

⎧⎨
⎩ −∑∞

n=1

(−r
a

)n−1
sinnφ (r < a),∑∞

n=1

(−a
r

)n+1
sinnφ (r > a),

=
aV

π

⎧⎨
⎩ − sinφ

r2+2ar cosφ+a2 (r < a),

sin φ
r2+2ar cosφ+a2 (r > a).

(10)

using Dwight 417.4. Similarly, the azimuthal electric field is, using Dwight 417.3,

Eφ = −1

r

∂Φ

∂φ
= − V

πa

⎧⎨
⎩
∑∞

n=1

(−r
a

)n−1
cos nφ (r < a),∑∞

n=1

(−a
r

)n+1
cos nφ (r > a),

= −V

π

⎧⎨
⎩

r+a cos φ
r2+2ar cosφ+a2 (r < a),

a
r

a+r cosφ
r2+2ar cos φ+a2 (r > a).

(11)

We digress briefly to discuss the equipotentials and field lines. For this, we note that,∫
a sinφ

r2 + 2ar cos φ + a2
dr = tan−1 r sinφ

a + r cos φ
= − tan−1 a sin φ

r + a cos φ
, (12)

so that the potential can be obtained by integrating eq. (10). Hence,

Φ(r, φ, z) =
V

π

⎧⎨
⎩ tan−1 r sin φ

a+r cosφ
= θ (r < a),

tan−1 a sinφ
r+a cosφ

(r > a),
(13)

which is continuous at r = a, where θ is the azimuthal angle with respect to the x-axis
measured from the location of the battery. When r = a, angle θ equals φ/2 so that eq. (13)
agrees with eq. (4). The equipotentials are shown in the figure below, from [13].
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Inside the circuit the equipotentials are straight lines that emanate from the battery.
Outside the circuit the equipotentials are circles that pass through the battery.

The corresponding electric field lines are shown below.

The Poynting vector, S = (c/4π)E × B, is nonzero only inside the circuit, where S is
perpendicular to E and hence parallel to the equipotentials. That is, the equipotential lines
inside the circuit on the upper figure on p. 4 also represent the flow of energy from the
battery to the resistive circuit, as shown below as well.

A subtlety is that the electric field inside the conductor at r = a is purely azimuthal,
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as needed to drive the current in the resistive medium. This is consistent with eq. (10) in
that the average of the radial electric field at r = a− and r = a+ is zero. In contrast, the
azimuthal electric field (11) is continuous at r = a. Hence, the flow of energy into the resistor
at r = a is described by S = cEφφ̂ × B/4π = V I r̂/2πa, which is the power dissipated per
unit length around the circumference of the resistive surface.

To evaluate the electromagnetic momentum (1), we first express the electric field for
r < a in rectangular coordinates,

E(r < a) = (Er cos φ − Eφ sinφ) x̂ + (Er sin φ + Eφ cos φ) ŷ

=
V

π

r sinφ x̂ − (a + r cosφ) ŷ

r2 + 2ar cos φ + a2
= Ex x̂ + Ey ŷ. (14)

We combine eqs. (1), (7) and (14) to calculate the electromagnetic momentum per unit
length along z of the cylindrical circuit as,

PEM =

∫
(Ex x̂ + Ey ŷ) ×Bẑ

4πc
dVol =

∫
EyB x̂ − ExB ŷ

4πc
dVol

= −V I

πc2

∫ a

0

r dr

∫ π

−π

dφ
(a + r cosφ) x̂ + r sinφ ŷ

r2 + 2ar cos φ + a2
=

2V I

ac2

∫ a

0

r dr x̂

=
aV I

c2
x̂, (15)

using Dwight 859.122 [14]. This is in agreement with the indirect calculation (6) of Sec. 2.1.1.

2.1.3 The Canonical Electromagnetic Momentum

The electromagnetic momentum can also be calculated using the concept of the canonical
momentum of a charge that interacts with a magnetic field [15], which notion dates back to
Faraday6 and Maxwell [20]. Namely, the electromagnetic part of the momentum associated
with a charge distribution � that is immersed in a vector potential A (in the Coulomb gauge,
strictly speaking) is given by,

PEM =

∫
�A

c
dVol. (16)

For a resistive circuit to contain current I, there must be a longitudinal electric field
inside the wire, and a nonzero surface-charge density is needed to shape this electric field.
In the case of a wire of radius b � a, the surface-charge density λ per unit length along the
wire is approximately,7

λ ≈ V φ

ln(b/a)
(17)

The vector potential at the surface of the wire is approximately,

A ≈ I ln(b/a)

c
l̂. (18)

6Electromagnetic momentum can be identified with the electro-tonic state, first discussed by Faraday in
Art. 60 of [16]. Other mentions by Faraday of the electrotonic state include Art. 1661 of [17], Arts. 1729
and 1733 of [18], and Art. 3269 of [19].

7Compare with an “exact” calculation of the surface charge on the inner conductor of a coaxial cable [1].
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The x component of the electromagnetic momentum (16) is then,

PEM,x =

∫
λAx

c
dl ≈

∫
V φ

ln(b/a)

I ln(b/a)

c
sinφ

a dφ

c
≈ aV I

c2
, (19)

in agreement with eq. (6).
For the example of Sec. 2.1.2 of a cylindrical circuit, the surface charge distribution σ

per unit length in z can be related to the radial component of the electric field (10),

σ(r = a+) =
Er(r = a+)

4π
=

V tan(φ/2)

8π2a
, σ(r = a−) = −Er(r = a−)

4π
= σ(r = a+), (20)

noting that Er = 0 inside the conducting cylinder.8 The vector potential associated with
the magnetic field (7) is purely azimuthal, and its value at radius r = a follows from use of
the relation B = ∇ × A and Stokes’ theorem,

Aφ(r = a) = −Ba

2
= −2πIa

c
. (21)

The x component of the electromagnetic momentum per unit length along z is then,

PEM,x =

∫ π

−π

σAx

c
a dφ = −

∫ π

−π

σAφ sinφ

c
a dφ =

aV I

2πc2

∫ π

−π

sin2 φ

1 + cos φ
dφ

=
aV I

2πc2

∫ π

−π

(1 − cosφ) dφ =
aV I

c2
, (22)

as found previously by other methods.

2.1.4 Energy-Flow Velocity

The (instantaneous) velocity venergy of the flow of energy in the electromagnetic field is
sometimes taken to be the ratio of the Poynting vector S = (c/4π)(E × B) to the energy
density u = (E2 + B2)/8π in the electromagnetic field,9

venergy =
S

u
= 2c

E × B

E2 + B2
. (23)

Note that the magnitude of venergy is bounded by,10

venergy = |v| ≤ c
2EB

E2 + B2
≤ c , (24)

8Oct. 19, 2020. There exists a tiny correction to the surface-charge density due to the effect of centrifugal
force on the conduction electrons, as discussed in Sec. 4 of [21].

9J.J. Thomson developed the notion of field-momentum density (1) essentially according to p = S/c2 =
uvenergy/c2 [5, 6]. See also eq. (19), p. 79 of [22], and p. 6 of [23]. The idea that an energy-flux vector
is the product of energy density and energy-flow velocity seems to be due to Umov [24] (1874), based on
Euler’s continuity equation [25] for mass flow, ∇ · (ρ venergy) = −∂ρ/∂t. Poincaré applied this notion to an
électromagnétic fluide fictif between eqs. (3) and (4) of [8] (1900). The energy-flow velocity (32) appeared on
p. 392 of the textbook [26] and on p. 794 of [27]. See also [28]-[31]. Nonstandard definitions are considered
in [32]-[34].

10(Nov. 3, 2020). Thanks to Oliver Johns for pointing this out.
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and that the maximal venergy = c only occurs when E = B and E ⊥ B.
In the present example this is nonzero only inside the cylinder of radius a, where E is

given by eq. (14) and B is given by eq. (7), and E ⊥ B. Then,

|E| =

∣∣∣∣−V

π

(a + r cosφ) x̂ + r sinφ ŷ

r2 + 2ar cos φ + a2

∣∣∣∣ =
V

π
√

r2 + 2ar cosφ + a2
=

V

πr′
, (25)

where r′ =
√

r2 + 2ar cosφ + a2 is the distance from the battery to the observation point.
If the resistance of a unit length along the cylinder is RΩ is Ohms, then in Gaussian units,
R = RΩ/30c, so that,

B =
4πV

Rc
=

120πV

RΩ
, |E × B| = EB =

V

πr′
120πV

RΩ
. (26)

Similarly,

E2 + B2 = V 2

(
1

(πr′)2
+

(
120π

R2
Ω

)2
)

=
V 2(R2

Ω + (120π2r′)2)

R2
Ω(πr′)2

. (27)

Then, the magnitude of the energy-flow velocity (23) is,

venergy =
|S|
u

= 2c
|E × B|
E2 + B2

= c
2RΩ(120π2r′)

R2
Ω + (120π2r′)2

≤ c, (28)

where venergy = c on the circular arc r′ = RΩ/120π2 if this is less than 2a (and where
E = B = V/πr′).

Of course, the meaning of the energy-flow velocity in a static situation is somewhat
unclear; no material entity or signal propagates along lines of S, although the flow of (im-
material) energy from the battery to resistor results in mass transfer.11

2.2 “Hidden” Mechanical Momentum

In Sec. 2.1 we showed by several methods that there is a nonzero electromagnetic momentum
associated with a DC circuit that is at rest in the laboratory. If this momentum is related to
the kind of momentum familiar in mechanical systems, then we expect the total momentum
of a system at rest to be zero. Hence, consistency between field and mechanical momenta
requires that the DC circuit at rest contain nonzero mechanical momentum that is equal
and opposite to the electromagnetic momentum (6).

A DC circuit does contain moving charge carriers, but it would appear that the total
momentum vector associated with this motion is zero for steady currents that flow in closed
loops. The challenge, then, is to identify a kind of “hidden” mechanical momentum in the
DC circuit.

11If the battery were switched on at some time, a transient energy flow with velocity c would propagate out
from the battery until the steady state fields (and field energy) are established. For an idealized discussion
of transient fields in a solenoid, see [35]. For other examples of energy flow in “static” situations, see [36]
and references therein. A Hertzian oscillating dipole has venergy ≤ c everywhere, as noted in Sec. 4.3 of [37].
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The difficulty in reconciling Newton’s third law of mechanics with the physics of moving
electric charges was appreciated by Ampère, who concluded that isolated (electrically neu-
tral) current elements do not exist [39, 40]. It is generally considered that the introduction
of the Poynting vector [2] provided the desired consistency between electromagnetism and
mechanics for both time-dependent currents and moving, isolated charges. However, the
present example shows that the details of such consistency are subtle.

Concerns of the sort raised by the present example can be traced at least as far back
as 1891 to commentary by Thomson [5, 7], but went largely unnoticed until the 1950’s
[41, 42]. The physical character of “hidden” mechanical momentum (and that name) were
first enunciated in 1967 by Shockley and James [43], and further clarified by Coleman and
Van Vleck [44].

An important clue is the factor of c2 that appears in the denominator of eq. (6) which
alerts us to the possibility of small relativistic corrections. In particular, it can be that the
mechanical momentum of the charges carriers in the electrical current varies slightly with
position even though the current does not. This is discussed in detail for the closely related
example of a batter connected to a resistor by a coaxial cable in [1].

A general discussion of “hidden” momentum is given in [9], where in Sec. 4.1.4 it is argued
that in a quasistatic example such as a battery plus resistor, a nonzero electromagnetic-field
momentum is associated with an equal and opposite “hidden” mechanical momentum. The
challenge here is to give a physical model for the latter.

2.2.1 Momentum of the Moving Charges

A classical model of electric current, due to Drude [45], is that a conduction charge (electron
of charge e) undergoes frequent collisions with the “lattice” of the cylindrical resistor, and
that to a first approximation, all kinetic energy gained by an electron prior to a collision
is transferred to the lattice during the collision. The electron then accelerates due to the
azimuthal electric field inside the cylindrical resistor until the next collision, when its velocity
is again reset to zero. The moving electrons in some small azimuthal portion of the cylindrical
resistor can be characterized by an average “drift” velocity v(φ), which might vary slowly
with azimuth if the number density n(φ) (per unit axial length) also changes, such that the
average current I (per unit axial length) in the cylindrical resistor is independent of azimuth,

I = en(φ)v(φ), (π < φ < π). (29)

The average energy of the conduction electrons at azimuth φ can be written as,

U(φ) = γ(φ)m(φ)c2 + eΦ(φ), where γ =
1√

1 − v2/c2
, (30)

where m(φ) is the effective rest mass of the electron when inside the resistor, which can be
different from the rest mass me of an electron in “empty” space where the electromagnetic
field is zero.12

12The notion of effective mass of conduction charges is more familiar in quantum theory, where it was
introduced in 1929 by Peierls [47] in an extension of Bloch’s quantum theory of electrons in crystals [48].

An electron in an intense electromagnetic wave can also be thought of as having an effective mass different
from that, me of a free electron in zero external field [49].
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The delicate argument is that average, effective energy (30) is not actually a function of
φ, but obeys a conservation law even though the microscopic collisions are dissipative.

If so, we can take the constant energy to be that at φ = 0 where the scalar potential (4)
is zero,

U(φ) = U0 = γ0m0c
2 = γ(φ)m(φ)c2 + eΦ(φ), γ(φ)m(φ) = γ0m0 − eV φ

2πc2
, (31)

where γ0 is the Lorentz factor, and m0 (not me) is the effective mass, for a charge at φ = 0
where Φ = 0.

To a good approximation, the drift velocity v(φ) is independent of φ, and its magnitude
is typically smaller than 1 cm/s, such that γ(φ) ≈ 1 to very good accuracy. Then, for
batteries with potential of order 1 volt, the effective mass m(φ) differs from the free-electron
rest mass me ≈ 511 keV/c2 by roughly 1 eV/c2, i.e., by roughly a part per million. In the
simplest classical view of an electric current inside a resistive material, we expect that the
effective mass of a conduction electron is exactly me, but we should not necessarily expect
such a view to be correct at the part-per-million level, particularly as a resistive material is
a quantum system.

The net momentum (per unit axial length) of the moving charges has only an x-component,

Pcharges =

∫ π

−π

a dφn(φ)γ(φ)m(φ) v(φ) sin φ x̂ = aI

∫ π

−π

dφ

(
γ0m0

e
− V φ

2πc2

)
sinφ x̂

= −aIV

2πc2

∫ π

−π

dφφ sinφ x̂ = −aIV

c2
x̂ = −PEM . (32)

Thus, the net momentum of the charges is equal and opposite to the field momentum (6),
and the total momentum of the system is zero (as expected for a system “at rest”).13

The momentum (32) of the moving charges in the electric field of the battery is often
called the “hidden” mechanical momentum of the system.

The velocity vce,charges of the center of mass/energy of the moving charges is related by,

Mchargesvce,charges = Pcharges =
aIV

c2
x̂ = −PEM. (33)

The velocity of the center of energy of the other matter in the system is zero, as is the
velocity of the center of energy of the (static) electromagnetic fields of the system.

It seems odd that a system “at rest,” with zero total momentum, could have a nonzero
velocity of its center of energy, vce = Mchargesvce,charges/Mtotal. However, we have neglected
that the battery (at x = −a) is transferring energy to the resistor (centered at x = 0) at
rate IV per unit axial length. As such, the mass of the battery decreases with time, while
the mass of the resistor increases, at rates dM/dt = IV/c2 per unit axial length. This mass
transfer implies a contribution to the velocity of the center or mass/energy of the system
given by,

dM

dt
Δx =

aIV

c2
x̂ = −Mchargesvce,charges. (34)

13A version of this argument was first given on p. 215 of [50], but for a different model of the conductor.
See also [51].
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Hence, the velocity of the center of mass/energy of the entire system is zero, as expected,14

Mtotalvce,total = Mchargesvce,charges +
dM

dt
Δx = 0. (35)

A final peculiarity is that although the (macroscopic) velocity of the center of mass of the
system is zero, the location of the center of mass changes with time. This can be explained
my a microscopic view in which with a kind of Zitterbewegung takes place, as illustrated on
p. 8 of [1], which discusses a closely related example in greater detail.

2.2.2 An Alternative Computation of “Hidden” Momentum

When one seeks a general definition of “hidden” momentum of a subsystem, one is led to
two expressions [9],

Phidden ≡ P −Mvcm −
∮

boundary

(r − rcm) (p− ρvb) · dArea = −
∫

f0

c
(r − rcm) dVol, (36)

where P is the total momentum of the subsystem, M = U/c2 is its total (relativistic) “mass,”
U is its total energy, rcm is its center of mass/energy, vcm = drcm/dt, p is its momentum
density, ρ = u/c2 is its “mass” density, u is its energy density, vb is the velocity (field) of its
boundary, and,

fμ =
∂T μν

∂xν
, (37)

is the 4-force density exerted by the subsystem on the rest of the system, with T μν being
the stress-energy-momentum 4-tensor of the subsystem.15

In the present example, we consider two subsystems:

1. The macroscopic electromagnetic fields, including the electric field E inside the con-
ductor, related to the current density by J = σE, where σ is the electrical conductivity.

2. The rest of the system, nominally its “matter,” but including the microscopic electro-
magnetic fields at the atomic scale.

We can regard these subsystems as unbounded, such that the first expression for the “hidden”
momentum simplifies to,

Phidden ≡ P− Mvcm, (38)

where the quantity Mvcm is sometimes called the “overt” momentum of the subsystem.16

14The contribution (34) to Mtotalvce,total was noted in [52], but the (“hidden”) momentum (32) was
neglected, leading that author to the conclusion that “hidden” momentum was being “misused” by people
who don’t neglect it.

15Important qualifications are that the various quantities in eq. (36) are the result of macroscopic aver-
aging, that the values of p and ρ at the boundary are the limit of those just inside the boundary, and that
the volume integral of f0 does not include possible delta-functions at the boundary.

16The form (38) for “hidden” momentum was advocated in eq. (78) of [53].
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One consequence of the definition (38) is that the momentum of subsystem 1, the static
electromagnetic field, is to be called a “hidden” momentum, as the velocity of the center of
mass/energy of the field is zero (in the rest frame of the cylindrical resistor).

To apply the second from of eq. (36) to the electromagnetic subsystem, note that the top
row of the stress-energy-momentum tensor has the form T 0μ

EM = (uEM, cpEM) = (uEM,S/c),
and S is the Poynting vector. Thus, f0

EM = ∂uEM/∂ct + ∇ · S/c = ∂uEM/∂ct − ∂uEM/∂ct−
J · E/c = −J · E/c. Now, J · E dVol → IEφ(a, φ)a dφ inside the resistor and battery, where
the electric field is given by eq. (5). Hence,

Phidden,EM = −
∫

f0
EM

c
(r − rEM

ce ) dVol =

∫
J · E
c2

(
r − rEM

ce

)
dVol

=

∫ π

−π

a dφ
IEφ(a, φ)

c2
(a cosφ − xEM

ce ) x̂ (39)

= 2

∫ π−ε

0

a2IV

2(π − ε)ac2
cos φdφ − 2

∫ π

π−ε

a2IV

2εac2
cosφ dφ → 0 +

aIV

c2
x̂ = PEM,

as ε → 0, noting that
∫ π

−π
Eφ(φ) dφ = 0 for the electrostatic field.

For subsystem 2, the “matter” of the battery and resistor, it is useful to recall that for an
isolated, closed system with total stress-energy-momentum tensor T μν , the 4-divergence of
the latter is zero, ∂T μν/∂xν = 0. Considering the present example to be an isolated closed
system, we then have that the stress tensor for the EM and matter subsystems are related
by,

fμ
EM =

∂T μν
EM

∂xν
= −∂T μν

matter

∂xν
= −fμ

matter, (40)

where fμ
matter is the 4-force density exerted by the electromagnetic field on the matter sub-

system.
Then, according to the second form of eq. (36),

Phidden,matter = −
∫

f0
matter

c
(r − rmatter

ce ) dVol = −
∫

f0
EM

c
(r − rmatter

ce ) dVol

= −
∫ π

−π

a dφ
IEφ(a, φ)

c2
(a cos φ − xmatter

ce ) x̂ = −aIV

c2
x̂ = −PEM, (41)

again using that
∫ π

−π
Eφ(φ) dφ = 0, such that the result doesn’t depend on the position of

the center of mass/energy of the subsystem. Thus, we conclude that the matter subsystem
contains (“hidden”) momentum −aIV x̂/c2 by a different argument than that which led to
eq. (32).

The above argument illustrates a general result that for an isolated, closed, quasistatic
system with nonzero field momentum PEM and for which the current density obeys the
static form ∇ · J = 0, the rest of the system (the “matter” subsystem) contains “hidden”
momentum equal and opposite to the field momentum (which latter is also a “hidden”
momentum according to definition (36)). This relation holds whether or not the center of
mass/energy of the entire system is at rest.17

17See sec. 4.1.4 of [9] for more detailed discussion.
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[25] L. Euler, Principes généraux du mouvement des fluides, Acad. Roy. Sci. Belles-Lett.
Berlin (1755), http://kirkmcd.princeton.edu/examples/fluids/euler_fluids_55_english.pdf

[26] J.D. Kraus, Electromagnetics (McGraw-Hill, 1953, 1973),
http://kirkmcd.princeton.edu/examples/EM/kraus_73.pdf

[27] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1959, 1999),
http://kirkmcd.princeton.edu/examples/EM/born_wolf_7ed.pdf

[28] M.A. Biot, General Theorems on the Equivalence of Group Velocity and Energy Trans-
port, Phys. Rev. 105, 1129 (1957),
http://kirkmcd.princeton.edu/examples/EM/biot_pr_105_1129_57.pdf

[29] D.V. Geppert, Energy-Transport Velocity in Electromagnetic Waves, Proc. IEEE 53,
1790 (1965), http://kirkmcd.princeton.edu/examples/EM/geppert_pieee_53_1790_65.pdf

14



[30] E.O. Schulz-DuBois, Energy Transport Velocity of Electromagnetic Propagation in Dis-
persive Media, Proc. IEEE 57, 1748 (1969),
http://kirkmcd.princeton.edu/examples/EM/schulz-dubois_pieee_57_1748_69.pdf

[31] C.T. Sebens, Forces on fields, Stud. Hist. Phil. Mod. Phys. 63, 1 (2018),
http://kirkmcd.princeton.edu/examples/EM/sebens_shpmp_63_1_18.pdf

[32] J.W. Butler, A Proposed Electromagnetic Energy-Momentum for Charged Bodies, Am.
J. Phys. 37, 1258 (1969), http://kirkmcd.princeton.edu/examples/EM/butler_ajp_37_1258_69.pdf

[33] K. Widin, On the Energy Transport Velocity of the Electromagnetic Field, Proc. IEEE
60, 240 (1972), http://kirkmcd.princeton.edu/examples/EM/widin_pieee_60_240_72.pdf

[34] O.D. Johns, Relativistically Correct Electromagnetic Energy Flow, Prog. Phys. 17, 3
(2021), http://kirkmcd.princeton.edu/examples/EM/johns_pp_17_3_21.pdf

[35] K.T. McDonald, The Fields Outside a Solenoid with a Time-Dependent Current (Dec.
6, 1996), http://kirkmcd.princeton.edu/examples/solenoid.pdf

[36] K.T. McDonald, Relativity of Steady Energy Flow (Nov. 3, 2007),
http://kirkmcd.princeton.edu/examples/1dgas.pdf

[37] K.T. McDonald, Flow of Energy and Momentum in the Near Zone of a Hertzian Dipole
(Apr. 11, 2007), http://kirkmcd.princeton.edu/examples/hertzian_momentum.pdf

[38] K.T. McDonald, Decomposition of Electromagnetic Fields into Electromagnetic Plane
Waves (July 11, 2010), http://kirkmcd.princeton.edu/examples/virtual.pdf
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